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Tropical deforestation for agriculture causes alarming CO2 emissions and loss of biodiversity and ecosystem

services. To prevent this, various governments and multinational commodity-buyers offer a positive incentive

for locals conditional on no deforestation in a specified area. As an alternative to the area no-deforestation

condition, we propose a weaker “regeneration condition”: if forest is cleared on land in the specified area,

locals prevent its economic use, enabling the forest to regenerate. With innovation in cooperative game theory,

we characterize the best condition (area no-deforestation vs. area regeneration) and feasible incentives to

prevent deforestation and to compensate each local for his missed economic opportunity. The regeneration

condition is best in an area with the potential for entrants to engage in deforestation. Without entrants, if

locals can cooperate, the area no-deforestation condition is best, and works with any incentive that is more

valuable for locals collectively than deforestation. By surveying smallholder palm farmers in 58 villages of

East Kalimantan, Indonesia, we fit our model with a price premium for palm fruit as the incentive, in each

village as the area. A price premium is an imperfect incentive, having least value for a farmer with the least

land and, correspondingly, high temptation to engage in deforestation. The Roundtable on Sustainable Palm

Oil (RSPO) price premium is too low. Still, with a moderate price premium, our area regeneration condition

prevents deforestation in most villages and is remarkably robust to deter potential entrants.

1. Introduction

Tropical forests hold 80% of the world’s biodiversity, regulate freshwater, and provide other essential

ecosystem services, yet are rapidly destroyed for agriculture, contributing 15% of humans’ annual

CO2 emissions (Pendrill et al. 2022, Feng et al. 2022). A hopeful prospect is that a local community,

given a positive incentive, can prevent deforestation (FAO 2022). However, that might harm locals

who would otherwise improve their livelihood through deforestation.

Governments, water funds, carbon offset providers, and conservation NGOs offer payments to

individual landowners to forgo deforestation, and the Payment for Ecosystem Services (PES) literature,

surveyed in Engel et al. (2016), describes these schemes and their common faults. One is distributional

inequity: payment is provided only to a forest owner with a clear property right, in proportion to

the amount of his forest that he chooses to preserve, enriching the wealthiest locals (Haas et al.

2019). A second is inefficient targeting of payments: Some individuals are paid for forest they

would not have cleared, regardless, whereas, for other individuals, the offered payment is too low to

motivate them to forgo deforestation (Jack and Jayachandran 2019). Li et al. (2022) recommend

how to improve the PES contract for a forest owner with private information while highlighting

the challenge of monitoring. A third is “leakage”: displacement of deforestation, as an incentive

to prevent deforestation in one location causes deforestation to occur elsewhere (Alix-Garcia et al.
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2012, Delacote et al. 2016). A fourth is a failure to address illegal tropical deforestation, which is

roughly half of all tropical deforestation and is commonly undertaken by impoverished locals (Lawson

2014, Wunder 2008). Kerr et al. (2014) calls for compensation for all locals - especially impoverished

smallholders - to forgo deforestation.

Unilever, Nestle, Mars, Cargill, McDonald’s, and many other firms are publicly committed to

preventing deforestation in their supply chains, yet face problems of monitoring individual smallholders

and traceability. A typical firm sources indirectly from many thousands of smallholders. Unilever

and others have attempted to map each smallholder’s land plots, verify that these weren’t recently

deforested, and provide a price premium and technical assistance to improve the smallholder’s

productivity (Lambin and Furumo 2023). However, a smallholder may sell produce from a nearby

unmapped deforested plot under the disguise of improved productivity. Efforts to establish traceability

by recording transactions, e.g., with blockchain, often fail due to the introduction of incorrect

information at the origin (Babich and Hilary 2020). Unlike in testing for an adulterated input in a

batch of agricultural produce, as studied by Mu et al. (2016), no test serves to detect input from a

deforested plot. Yet EU regulation will soon require that, to sell in the EU, a firm must prove that its

product contains no palm oil, coffee, cocoa, wood, soy, rubber, or beef raised on land deforested since

2020 (European Commission 2023). Depending on what will constitute proof, the regulation may

harm smallholders by motivating firms to source from large producers (Reuters 2023, Guillot 2023).

Firms and governments now offer positive incentives conditional on area no-deforestation. The area

can be a specified polygon containing forest and all farms associated with a farmers’ cooperative,

with training and financing for all the farmers as the incentive to prevent deforestation therein

(Chocolonely 2020). Satellite remote sensing is used to monitor the specified polygon and detect, in

almost real-time, any fire or other forest clearing activity (Lambin and Furumo 2023). The area can

be the communal land of a village, with a payment to the community conditional on no deforestation

in the area, as in Mexico’s forested ejidos (Kaiser et al. 2023). Agarwal et al. (2022) and Santika et al.

(2019) study how, in Thailand and Indonesia, respectively, indigenous and impoverished communities

are granted land-use rights to preserve their community forests (though revoking land rights in the

event of deforestation can prove problematic Kerr et al. 2014). The area can be a jurisdiction, such as

the state of Sabah in Malaysia. Sabah’s government and palm oil buyers aim to prevent deforestation

in Sabah and enable all oil palm farmers therein to be paid a price premium (Ng et al. 2022).

In some intervention areas, but not others, the locals cooperate to share the benefits and coordinate

actions to prevent deforestation. Literature on community-PES and community forestry commonly

finds, in small areas with strong community ties, an association between cooperation and successful

forest protection (Hayes et al. 2019). In contrast, in large jurisdictions, cooperation is difficult due to

the large number of heterogeneous locals, resulting in inequities and exclusion of smallholders, and

ongoing deforestation (von Essen and Lambin 2021).
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Even a tight-knit community might fail to prevent deforestation due to entry. Examples arise in

East and West Kalimantan, some of Indonesia’s deforestation-prone regions, which are subdivided

into rural villages (desa) (see Figure EC.1). Observing that locals within each village have strong

social ties and ability to cooperate, Falcon et al. (2022) conducted a randomized controlled trial in

offering payment to a village community conditional on no deforestation (no major forest clearing

by fire) in the village for a year. This failed to prevent deforestation, which Falcon et al. (2022)

partially attribute to forest clearing by “rogue” entrants. Related empirical literature shows a positive

relationship between migrant entry and forest clearing for oil palm farms in Indonesia (Darmawan

et al. 2016), cocoa in West Africa (Ruf et al. 2015) and cattle in the Amazon (Carr 2009).

To deter entrants from engaging in deforestation, we propose the area regeneration condition:

either no deforestation occurs, or locals prevent production on the deforested land, enabling the forest

to regenerate. We introduce the term “block” for the act of preventing production on deforested land,

enabling the forest to regenerate. For example, Villadiego (2017) documents how locals block illegal

oil palm farming in Sumatra. A positive incentive conditional on area regeneration could motivate

locals to block any perpetrator that clears forest, and the threat of blocking could deter deforestation.

In creating a deterrent to deforestation, our proposed scheme differs from today’s common forest

restoration programs (see Tedesco et al. 2023 for examples) that reward a landowner after the logging,

farming, and degradation of primary forest on his land.

§2 presents our stylized model, with positive incentives for locals to meet a candidate condition. The

three candidates are: area regeneration, area no-deforestation, and individual no-deforestation. With

the latter, a local receives the incentive if and only if he does not engage in deforestation. Locals and

potential entrants decide whether to engage in deforestation, locals observe any deforestation, then

locals decide whether to block the perpetrators. We deliberately favor the individual no-deforestation

condition by (unrealistically) assuming perfect, costless monitoring, yet find in §3 that with practical

incentives an area condition outperforms the individual no-deforestation condition.

We characterize the best condition and the feasible set of incentives to prevent deforestation and

to compensate each local for his lost economic opportunity. The results, summarized in §4, depend

on whether or not locals can cooperate to coordinate their deforestation and blocking decisions and

transfer utility1. With potential entrants, the area regeneration condition is best, and cooperation

expands the feasible set of incentives to prevent deforestation. With cooperation and no potential

entrants, the area no-deforestation condition is best. An incentive only needs to make locals better off

overall than if they were to engage in deforestation, and locals prevent deforestation by compensating

each local to forgo deforestation.

1 In field research in rural Thailand and Indonesia, we observed that neighboring smallholders can share work, favors,
food, and other goods; they have monetary and nonmonetary mechanisms to transfer utility.



4 Xavier Warnes, Joann de Zegher, Dan Iancu, Erica Plambeck: Engaging Locals to Protect Forests

In §5, based on our survey of smallholder palm farmers in 58 villages in East Kalimantan, we fit our

model to evaluate the potential for a price premium for palm fruit conditional on area no-deforestation

(or area regeneration) to prevent deforestation and achieve compensation. Like Falcon et al. (2022),

we consider each village as the area because the smallholders we surveyed reported strong community

ties and cooperation within their village. Though the price premium for palm fruit certified by the

Roundtable on Sustainable Palm Oil (RSPO) is too low to prevent deforestation in all villages, at

a moderate price premium, area conditions would prevent deforestation and achieve compensation

in most villages. Surprisingly, the minimum price premium conditional on area regeneration that

prevents deforestation, assuming no entrants, is robust enough to deter many potential entrants.

§6 draws conclusions to help interested parties (commodity buyers, governments, water funds,

carbon offset providers, conservation NGOs, etc.) prevent deforestation and benefit locals.

A main contribution of the paper is to model strategic cooperation. The prior theoretical literature

on forest protection by a local community assumes that only one coalition can exist (Zavalloni et al.

2019, Bareille et al. 2021). We propose the concept of a cooperative game in partition correspondence

form and its Recursive Core. We apply this to predict how locals partition themselves into coalitions

in anticipation of a non-cooperative game among the coalitions and potential entrants (the locals in a

coalition cooperate to maximize net income for the coalition). The non-cooperative game has multiple

equilibria, and locals anticipate the correspondence between the partition and set of equilibrium

payoffs for coalitions in the partition. The premise of the Recursive Core is that when forming

a coalition, the members assume that “residual locals” (those left out) will respond by forming

coalitions to maximize their own net income. We derive by induction the Pessimistic Recursive

Core, assuming locals have pessimistic beliefs regarding residual locals’ partition and equilibrium

strategies in the ensuing non-cooperative game. (The analogous Optimistic Recursive Core is a subset

of the Pessimistic Recursive Core, so we conservatively conclude that an incentive and area condition

prevent deforestation when all outcomes in the Pessimistic Recursive Core have no deforestation.) A

game in partition correspondence form is a generalization of the game in partition function form as

defined by Thrall and Lucas (1963), and our solution concept generalizes the Recursive Core defined

by Kóczy (2007) for a game in partition function form. This methodological innovation allows us to

analyze strategic cooperation in a setting with multiple non-cooperative equilibria.

In related operations management (OM) literature on cooperation, Fang and Cho (2020) model

buyers’ strategic cooperation in managing their common suppliers’ social responsibility as a game in

partition function form. The recursive core is a refinement of the core concept used by Fang and

Cho. For cooperative games in which the payoff for a coalition does not depend on other coalitions

(games in characteristic function form), Tian et al. 2019 use farsighted solution concepts similar in

spirit to the recursive core (see Nagarajan and Sošić (2008) for a review). In modeling cooperation in
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assembly systems, Chen and Hall (2007) assume component suppliers form a single coalition and

coordinate their production schedules. Qian and Olsen (2020, 2022) model how farmers coordinate

their quality, quantity, and financial decisions through a cooperative and provide a survey of related

literature on farmers’ cooperatives. Boyabatli et al. (2021) provides insight in agricultural supply

chain management, including for smallholders to cooperate in sharing knowledge and water.

Other OM literature analyzes non-cooperative games among farmers in low and middle-income

countries, in which a farmer’s choice of quantity Chintapalli and Tang (2022), Pay et al. (2022),

technology adoption de Zegher et al. (2019), or quality Ayvaz-Çavdaroğlu et al. (2021), Mu et al.

(2016), Levi et al. (2020) affects the income of neighboring farmers. The non-cooperative games in

Mu et al. (2016), de Zegher et al. (2019), Pay et al. (2022) have multiple equilibria, so could be

extended to model cooperation among farmers as a game in partition correspondence form.

On preventing deforestation, Orsdemir et al. (2019) show how a firm avoids sourcing illegal wood by

purchasing a mill and log inputs and selling wood to competitors. McGahan and Pongeluppe (2023)

show how a firm sources from indigenous forest communities, promoting sustainable agroforestry.

Agrawal et al. (2022) analyze contract terms for offset credits, including for prevented deforestation.

Sunar and Swaminathan (2022) survey the literature on responsible operations and supply chain

management, with a spotlight on agriculture.

Notation. We use bold letters to denote vectors and matrices. For a vector x with components

indexed by some set N and for a subset S ⊆N , we define the notation xS :=
∑

i∈S xi, and we use the

common game-theoretic notation x−i for the vector obtained by removing component i from x and

(xi,x−i) for the vector where component i of x is replaced with a value xi. A partition π of a set N

is a set of mutually exclusive subsets whose union includes all the elements of N , i.e.,
⋃
S∈π S =N

and S ∩H = ∅ for all S,H ∈ π with S 6=H. We denote the set of all partitions of a set N by ΠN .

2. Model Formulation

In an area containing forest, an interested party aims to prevent deforestation, and offers a positive

incentive to each local `∈L to meet a specified forest protection condition.

Locals’ Decisions: Each local ` ∈ L (“he”) decides whether to incur cost c` to convert forested

land to an individually-profitable use (d` = 1) or not (d` = 0). If ` engages in deforestation, other

locals observe that decision d` = 1 and decide whether to incur a cost η to “block” `, i.e., prevent `

from using land he deforested to generate income, so the forest regenerates. Similarly, the locals in L
observe any new entrant that engages in deforestation in the area and decide whether to incur cost η

to block that entrant. Each local `∈L derives income of J`
(
d` · (1− b`), κ`

)
that depends on whether

` engages in deforestation, whether ` is blocked (b` = 1) or not (b` = 0), and whether ` receives the

incentive κ` ∈ {yes,no}. The incentive would increase a local’s income

J`(x,yes)≥ J`(x,no), ∀x∈ {0,1},∀ `∈L, (1)
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while, absent any incentive or blocking, a local increases his net income by engaging in deforestation:

J`(1,no)− c` >J`(0,no). (2)

We use δ` :=
(
J`(1,no)− c`

)
− J`(0,no) to denote the value from engaging in deforestation, φ` :=

J`(0,yes)−J`(0,no) to denote the value of the incentive for a local who doesn’t engage in deforestation,

and ∆` := φ` − δ` to denote the increase in net income from receiving the incentive rather than

engaging in deforestation, for `∈L. We say local ` prefers the incentive if ∆` > 0, whereas he prefers

deforestation if ∆` < 0; more generally, a subset of locals S ⊆ L prefers the incentive if ∆S > 0,

whereas that subset prefers deforestation if ∆S < 0. For brevity of exposition, we assume every local

has a strict preference: ∆` 6= 0 for every `∈L, and denote by G := {`∈L : ∆` > 0} the set of all locals

that prefer the incentive. We focus on the common circumstance that the incentive is imperfect;

though some locals prefer the incentive, at least one local prefers deforestation:

∅ 6= G ⊂L, (3)

Entrants’ Decisions: Let E represent the set of entrants, all of whom would individually profit from

deforestation in the area. Each entrant e∈ E decides whether to incur cost ce > 0 to convert forested

land to an individually-profitable use (de = 1) or not (de = 0), and derives income of Je
(
de · (1− be)

)
,

where be ∈ {0,1} indicates whether locals block the entrant. Naturally, we assume that Je
(
1)> ce for

each e∈ E , meaning that an entrant could increase his net income by engaging in deforestation in

the area if he isn’t blocked. One should think of E as the potential entrants who might engage in

deforestation in the area (enter by setting de = 1) though for brevity we write “entrant” rather than

“potential entrants” throughout the paper.

Candidate Forest Protection Conditions: The interested party provides the incentive to locals

if and only if they meet a specified condition, for which we consider three candidates:

1. Individual Condition I: κ` = yes if and only if d` = 0.

2. Area No-Deforestation Condition N: κ` = yes if and only if di = 0 for all i∈L∪E .

3. Area Regeneration Condition R: κ` = yes if and only if di · (1− bi) = 0 for all i∈L∪E .

With the Individual Condition, whether a local receives the incentive only depends on his individual

deforestation decision. Hence the optimization problems solved by the locals and entrants decouple

and the equilibrium is simple: to maximize his net income, each local `∈L engages in deforestation

(d` = 1) if and only if ∆` > 0, each entrant e∈ E engages in deforestation (de = 1), and no local blocks

production on the deforested land (implying bi = 0 for all i∈L∪E).

In contrast, with either area condition, whether a local receives the incentive depends on the

decisions of all the locals and entrants. For each area condition, we formalize and analyze locals’
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and entrants’ equilibrium optimal decisions in the case that locals cannot coordinate decisions

and transfer utility among themselves (the non-cooperative game in §3.2) and in the case that

they can (the transferable utility cooperative game in §3.3). Entrants are individuals who do not

coordinate decisions or transfer utility. Note that Area Regeneration R is a weaker condition than

Area No-Deforestation N: R is satisfied if N is satisfied or if every local and entrant that engaged in

deforestation is blocked from generating income in the deforested land so that the forest regenerates.

Two Performance Criteria: To provide guidance to the interested party,

1. We say that a condition prevents deforestation if every equilibrium has no deforestation in the

area, di = 0 for all i∈L∪E .

2. We say that a condition prevents deforestation with compensation if it prevents deforestation

and, in every equilibrium, the net income of each local `∈L exceeds his net income if he had

engaged in deforestation, J`(1,no)− c`.

Because the interested party relies only on positive incentives (1), preventing deforestation weakly

benefits each local `∈L in that his net income will be at least J`(0,no), his status-quo income without

the incentive and without engaging in deforestation. In comparison, preventing deforestation with

compensation guarantees greater benefit for each local – full compensation for the lost opportunity to

engage in deforestation. To emphasize that each local `∈L has net income greater than J`(1,no)− c`
in equilibrium under a given condition, we say that the condition achieves compensation.

2.1. Discussion of Modeling Assumptions

Deforestation: Parameter δ` is local `’s value from his optimal extent of deforestation. §5 estimates δ`’s

for heterogeneous smallholders using an operational model, field survey and data envelope analysis.

Imperfect Incentive: §3 takes as given the imperfect incentive the interested party offers to locals. The

incentive could be the RSPO price premium, for example, or legal recognition of a smallholder’s right

to his existing farm. In both examples, a local with a smaller farm tends to have φ` < δ` because the

value of the incentive φ` is smaller with the smaller farm, whereas the value of deforestation δ` to

expand the farm is larger. Kaiser et al. (2023) documents barriers to targeting a perfect incentive

to each individual so, in practice, an offered incentive is insufficient for some individuals to forgo

deforestation. Hence we assume in §3 that φ` < δ` for at least one local, represented by G ⊂L in (3).

§4 relaxes assumption 3 and provides guidance for selecting an incentive and condition C∈ {I,N,R}.

Blocking: In reality, the means and cost of blocking depend on characteristics of the area.

In many a deforestation-prone area, the perpetrators of deforestation lack the heavy machinery

required for logging and instead light fire to clear forest (Tyukavina et al. 2018, van Wees et al. 2021).

In such an area, blocking could occur by locals putting out the fire and motivating the perpetrator

to relinquish the forest land. Falcon et al. (2022) document that villagers in Indonesia formed fire

brigades in response to an incentive to prevent any major clearing of forest in their village.
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An area’s cost of blocking (η in our model) can be lowered by training locals to stop forest-clearing

activity and an alert system with remote sensing to quickly detect and direct locals to the specific

location of any forest-clearing activity, as Slough et al. (2021) did for 39 community forest areas in

the Peruvian Amazon. Quick response facilitates blocking – putting out a fire is easier while the fire

is small; motivating a perpetrator to relinquish forest land may be easier before he grows a crop.

The means and cost of blocking depend on an area’s governance and property rights. Blocking

illegal deforestation is easy for a local who simply reports it to the police to stop the perpetrator

from using the deforested land; this would be represented in our model by small η, the reporting

cost. The blocking cost is higher in an area without such government enforcement. In an area with

weak property rights and logging machinery, Engel et al. (2006) describe how locals block logging

by damaging or stealing the perpetrator’s machinery, burning the perpetrator’s camp, or blocking

roads to prevent transport of logs out of the forest. An area with strong individual property rights

to forested land, such that a local could not be blocked from deforesting his own property and no

entrant could seize and deforest a local’s property, would have η=∞ in our model (and E = ∅).

Our model has constant blocking cost η as an area parameter. Needed for analytic tractability, this

lets us see how the magnitude of the blocking cost affects the regeneration condition’s performance.

3. Analysis of Equilibrium Decisions Under Each Area Condition

The overarching purpose of this section is to determine when and how the incentive to meet a specified

area condition C∈ {N,R} prevents deforestation and achieves compensation, respectively.

In §3.1, we analyze how deforestation and blocking decisions depend on the partition of locals

into coalitions. A coalition S ⊆L is a set of locals who coordinate their deforestation and blocking

decisions to maximize their aggregate net income. Each C∈ {N,R} induces a non-cooperative game,

with net income for each entrant and coalition depending on others’ decisions.

In §3.2 and §3.3 we apply the results of §3.1. In §3.2 the locals do not coordinate, so the partition

is π= {{`} : `∈L} in which each local is a singleton. In §3.3, the locals are able to coordinate and

transfer utility within a coalition, and we analyze how they partition themselves into coalitions in

anticipation of the non-cooperative game of deforestation and blocking.

3.1. Non-cooperative Game of Deforestation and Blocking

For a specified area condition C∈ {N,R} and partition π ∈ΠL of locals, the non-cooperative game

occurs in two stages. In the first stage, each coalition S ∈ π chooses whether to engage in deforestation

(set dS = 1) or not (set dS = 0), and all locals follow their respective coalition’s decision, i.e., d` = dS

for every `∈ S and every S ∈ π. Simultaneously, each entrant chooses whether or not to engage in

deforestation, de ∈ {0,1}. We use d∈ {0,1}|π|+|E| to denote the deforestation decisions of all coalitions

and entrants. In the second stage, having observed which individuals engaged in deforestation
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(di = 1, ∀ i∈L∪E), each coalition S ∈ π chooses which of those individuals to block from deriving

economic benefit from their deforested land. We represent the blocking decisions by B∈ {0,1}|π|×|L∪E|

with BSi = 1 indicating that coalition S blocks individual i∈L∪E , and maxS∈π BSi = 1 indicating

that individual i is blocked from using deforested land.

The locals receive the incentive if the deforestation and blocking decisions comply with the specified

area condition C∈ {N,R}, as indicated by

κN(d,B) =

{
yes if

∑
S∈π dS +

∑
e∈E de = 0,

no otherwise.
(4)

κR(d,B) =

{
yes if

∑
S∈π

∑
`∈S dS ·

(
1−max

H∈π
BH`

)
+
∑

e∈E de ·
(

1−max
H∈π

BHe

)
= 0,

no otherwise,
(5)

A subgame-perfect equilibrium is a set of deforestation decisions d∗ and blocking decisions B∗(d) for

d∈ {0,1}|π|+|E| that satisfy, for each S ∈ π and e∈ E :

B∗S(d)∈ arg max
BS∈{0,1}|L∪E|

(∑
`∈S

[
J`

(
dS ·

(
1−max

H∈π
B∗H`(d)

)
, κC
(
d,BS,B

∗
−S(d)

))]
− η ·

∑
i∈L∪E

BSi

)
(6)

d∗e ∈ arg max
de ∈{0,1}

(
Je

(
de ·
(
1−max

S∈π
B∗Se(de,d

∗
−e)
))
− ce · de

)
(7)

d∗S ∈arg max
dS ∈{0,1}

(∑
`∈S

[
J`

(
dS ·
(
19max

H∈π
B∗H (̀dS,d

∗
−S)
)
,κC
(
π,dS,d

∗
−S,B

∗(dS,d
∗
−S)
))
9c`·dS 9η·

∑
i∈L∪E

B∗Si

])
. (8)

We use Q(π,C) to denote the set of all subgame-perfect equilibria, i.e., all (d∗,B∗(d)), that satisfy

(8)-(6) for partition π ∈ΠL and forest protection condition C∈ {N,R}.

Our first result establishes that in equilibrium, either no individual engages in deforestation or all

individuals engage in deforestation, then none are blocked.

Lemma 1. For every partition π ∈ΠL and condition C∈ {N,R}, Q(π,C) is non-empty, and any

subgame-perfect equilibrium in Q(π,C) has B∗(d∗) = 0 and either d∗ = 1 or d∗ = 0.

We use the terms deforestation equilibrium to refer to a subgame-perfect equilibrium with d∗ = 1,

no-deforestation equilibrium to refer to a subgame-perfect equilibrium with d∗ = 0, and equilibrium

indicator for d∗. Only the two extreme types of equilibrium exist because each coalition and entrant

are more inclined to engage in deforestation when others do so. With N, deforestation by any coalition

or entrant prevents all the others from earning the incentive, so their best response is to engage in

deforestation, too. With R, deforestation by more individuals raises the total cost for a coalition to

earn the incentive by blocking all of them, which favors the coalition also engaging in deforestation.

The next result identifies when each of the two types of equilibrium exists. T (π,C) represents the

types of equilibria in Q(π,C): T (π,C) = {0} for only no-deforestation equilibria, T (π,C) = {1} for

only deforestation equilibria, and T (π,C) = {0,1} for both types.
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Lemma 2. Consider a partition π ∈ΠL. With the area no-deforestation condition N,

T (π,N) =


{0} if π= {L},∆L > 0,and E = ∅
{1} if ∆S < 0 for some coalition S in π or E 6= ∅
{0,1} otherwise.

With the area regeneration condition R, there exist thresholds η1(π), η2(π) so that η1(π)≤η2(π) and

T (π,R) =


{0} if η < η1(π)

{1} if η > η2(π)

{0,1} otherwise.

With N, deforestation equilibria exist unless the locals form the grand coalition (π= {L}), prefer

the incentive (∆L > 0), and face no entrants. Only deforestation equilibria exist when a coalition

prefers deforestation (∆S < 0) or there are entrants; there is no credible threat of blocking to deter

them (B∗(d) = 0) and deforestation is the best response from all other parties.

With R, a credible threat of blocking can sustain no-deforestation equilibria. Consider:

η1(π) := sup{η : ∃S ∈ π with ∆S > η (|L \S|+ |E|)} (9a)

η2(π) := inf

{
η :

∑
S∈π:∆S>0

⌊
∆S

η

⌋
<max

{
max

H∈π:∆H<0
|H| ,1E6=∅

}}
. (9b)

When η < η1(π), some coalition of locals S ∈ π could profitably block all other locals L\S and entrants

E from using deforested land. Given that credible threat of blocking, no individual would engage in

deforestation. When η > η2(π), some entrant or coalition H ∈ π that prefers deforestation (∆H < 0)

will engage in deforestation, knowing that coalitions that prefer the incentive (S ∈ π with ∆S > 0)

won’t block use of that deforested land. The term
∑

S∈π:∆S>0

⌊
∆S
η

⌋
is the maximum number of locals

or entrants that the coalitions that prefer the incentive would block; the floor operator b·c is used

because utility transfer occurs only within coalitions, not across coalitions. When η ∈ [η1(π), η2(π)],

deforestation and no-deforestation equilibria exist because no single coalition could profitably block

all other individuals, whereas two or more coalitions jointly could.

The thresholds η1(π) and η2(π) decrease with the number of entrants. In other words, with more

entrants, the blocking cost η must be lower to guarantee a (unique) no-deforestation equilibrium.

The thresholds η1(π) and η2(π) depend on the partition π. If locals are in the grand coalition

(π = {L}), prefer the incentive (∆L > 0) and face no entrants then η1(π) = η2(π) = +∞: only no-

deforestation equilibria exist irrespective of the blocking cost. Similarly, with any partition of locals

into coalitions that all prefer the incentive (∆S > 0 for all S ∈ π) and no entrants, η2(π) = +∞:

no-deforestation equilibria exist irrespective of the blocking cost. With any partition of locals into

coalitions that all prefer deforestation (∆S < 0, ∀S ∈ π), η1(π) = η2(π) = −∞: only deforestation

equilibria exist, irrespective of the blocking cost. Except in the aforementioned cases, η1(π) and η2(π)

are strictly positive and finite, i.e., the types of equilibria depend on the blocking cost.
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Importantly for §3.3 (how locals partition themselves into coalitions), the partition affects whether

or not deforestation occurs and the resulting net income for each coalition. Moreover, Lemma 2

implies that given a partition and condition, the resulting net income may not be unique.

A Partition Correspondence V : ΠL→ 2Rπ evaluated at partition π and condition C is the set

of characteristic functions that assign the net income for each coalition S ∈ π in the associated

subgame-perfect equilibrium for C∈ {N,R}:

V (π;C) =
{
wqπ : π→R for all q ∈Q(π,C)

}
, (10)

where the characteristic functions wqπ for condition C and equilibrium q= (d∗,B∗(d))∈Q(π,C) are:

wqπ(S;C) :=
∑
`∈S

J`

(
d∗S ·

(
1−max

H∈π
B∗H`(d

∗)
)
, κC
(
d∗,B∗(d∗)

))
− η ·

∑
i∈L∪E

B∗Si. (11)

Lemma 1 implies that the value of these characteristic functions depends only on S and whether

(d∗,B∗(d)) is a deforestation equilibrium or no-deforestation equilibrium:

wqπ(S;C) :=w(S,π;d∗) :=w(S;d∗) =

{∑
`∈S J`

(
0,yes

)
if d∗ = 0∑

`∈S

[
J`(1,no)− c`

]
if d∗ = 1,

(12)

We subsequently use notations w(S;d∗) and w(S,π;d∗) with the understanding that d∗ ∈ T (π,C).

3.2. Without Coordination and Utility Transfer

Locals and entrants engage in the non-cooperative game of deforestation and blocking with each

individual maximizing his own net income (partition π= {{`} : `∈L}), for which Lemma 2 implies:

Corollary 1. Without coordination and utility transfer, the area no-deforestation condition N

does not prevent deforestation, whereas the area regeneration condition R prevents deforestation if

η≤ ηNC
1 :=

maxg∈G∆g

|L|− 1 + |E|
, (13)

albeit without achieving compensation.

Our conservative performance criteria (to prevent deforestation, to achieve compliance) require that

all equilibria have the desired performance. The area no deforestation condition cannot prevent

deforestation because π = {{`} : `∈L} so deforestation equilibria exist; with one individual engaging

in deforestation, deforestation is the best response of all others. The area regeneration condition R

prevents deforestation when the blocking cost is sufficiently low (or equivalently, the incentive is

sufficiently strong) that one local g ∈ G is motivated to block all other locals L\ {g} and all entrants

from using deforested land, a credible threat of blocking, so only no-deforestation equilibria exist.

The advantage of the area regeneration condition R over the area no-deforestation condition N

would be even greater if we were optimistic that the interested party could induce a no-deforestation

equilibrium when both equilibrium types exist. From Lemma 2, a no-deforestation equilibrium exists
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with R when the blocking cost satisfies η≤max`∈L∆`, which is weaker than requirement (13) in that

the incentive need only motivate a local to block one individual, not all the other locals and entrants

as in (13). In contrast, under the area no-deforestation condition N, with any entrant or with a local

who prefers deforestation (as assumed in 3), only deforestation equilibria exist.

3.3. With Coordination and Utility Transfer

Consider a TU cooperative game in partition correspondence form: (L, V ), where V is the partition

correspondence defined in (10). Offered the incentive to meet condition C∈ {N,R}, the locals `∈L

form coalitions and may transfer utility within each coalition. The locals know that with partition

π ∈ΠL, the net income for each coalition S ∈ π is w(S,d∗) for some d∗ ∈ T (π,C), with w(S,d∗) and

T (π,C) specified in (12) and Lemma 2 of §3.1. An outcome of this game is a triple: a partition

π ∈ΠL, equilibrium indicator d∗ ∈ T (π), and allocation of net income to each local {a`}`∈L with∑
`∈S a` =w(S,d∗) for every S ∈ π.

To predict which outcomes could occur, we extend Kóczy’s Pessimistic Recursive Core solution

concept to games in partition correspondence form. The premise of the recursive core is that locals

who form a coalition anticipate that locals left out of that coalition will act so as to maximize their

own net income, engaging in a smaller, “residual TU cooperative game.” Through recursion over

residual games, one solves for the recursive core: the set of outcomes at which no set of locals would

expect to achieve higher net income by forming different coalitions. If the core outcome of a residual

game or the characteristic functions are not unique, we assume locals who form a coalition have

pessimistic beliefs about how the rest will act.

Definition 1 (Residual TU Cooperative Game). Consider a subset of locals R⊆L and a

fixed partition πL\R ∈ΠL\R of the other locals. In response to πL\R, the locals in R face a residual

TU cooperative game in partition correspondence form: the sub-partition πR ∈ΠR formed by the

locals in R together with the sub-partition of the other locals πL\R and the associated equilibrium

indicator d∗ ∈ T (πR ∪ πL\R) determine the net income w
(
S,πR ∪ πL\R;d∗

)
for the locals in each

coalition S ∈ πR. An outcome for the residual game is a partition πR ∈ΠR, equilibrium indicator

d∗ ∈ T (πR ∪πL\R), and allocation {a`}`∈R with
∑

`∈S a` =w
(
S,πR ∪πL\R;d∗

)
for every S ∈ πR.

Definition 2 (Pessimistic Recursive Core). Suppose that for an integer k ∈ [1, |L|− 1], the

core C(R;πL\R) is defined for every residual game in which a set of locals R⊂L with |R| ∈ [1, k]

respond to a partition of the other locals πL\R ∈ΠL\R. For k = 1, the residual game has a single

local R= {`} and the core C({`};πL\{`}) is the set of triples of partition, equilibrium indicator, and

allocations of the form
(
{{`}},d∗, a`

)
with a` =w

(
{`},{{`}};d∗

)
and d∗ ∈ T ({{`}}∪πL\{`}). For a

residual game with |R|= k+ 1, the core C(R;πL\R) is the set of un-dominated outcomes, where an



Xavier Warnes, Joann de Zegher, Dan Iancu, Erica Plambeck: Engaging Locals to Protect Forests 13

outcome with allocation {a`}`∈R and partition πR is dominated if there exists a coalition H ⊆ R

forming partition πH ∈ΠH so that

w
(
S,σR\H ∪πH ∪πL\R; d̂∗

)
>
∑

`∈S a` (14)

for every coalition S ∈ πH , every sub-partition σR\H ∈ΠR\H and every equilibrium indicator d̂∗

and real values {θ`}`∈R\H satisfying:{(
σR\H , d̂∗,{θ`}`∈R\H

)
∈C(R \H;πH ∪πL\R) if H ⊂R and C(R \H;πH∪πL\R) 6= ∅

d̂∗ ∈ T (σR\H ∪πH ∪πL\R) otherwise.
(15)

The pessimistic recursive core of the TU cooperative game among all locals is then given by C(L;∅).

Notice how the definition of dominated outcome represents pessimism (that locals that form a

coalition anticipate their worst-case net income when the residual locals act to maximize their own

net income). For coalition H to deviate, it should be able to form some new partition πH in which

every coalition S ∈ πH has strictly greater net income than in the starting outcome (per 14) under

every plausible configuration that could emerge in the residual game played by the remaining locals in

R\H, i.e., any core outcome (if that residual game has a non-empty core) or any possible equilibrium

outcome otherwise (per 15).

The alternative to pessimism is optimism (locals that form a coalition anticipate their best-case

net income when residual locals act to maximize their own net income). The EC formulates the

optimistic recursive core and, in Proposition 6, shows that this is a subset of the pessimistic recursive

core. Our performance criteria require that only outcomes with the desired performance are in the

recursive core. Therefore, we conservatively assume pessimism. If the performance criteria are met

with pessimistic locals, they would also be met with optimistic locals.

For brevity, we subsequently use “core” to refer to the pessimistic recursive core.

A condition C∈ {N,R} prevents deforestation if the core only contains “No-Deforestation Out-

comes”, and it achieves compensation if the core only contains “Compensation Outcomes”:

Definition 3. A Deforestation Outcome is an outcome with a deforestation equilibrium d∗ = 1.

A No-Deforestation Outcome is an outcome with a no-deforestation type of equilibrium d∗ = 0 that

allocates a` ≥min
(
J`(0,yes), J`(1,no)− c`

)
to every local `∈L; it is a

Compensation Outcome if a` ≥ J`(1,no)− c`, for all `∈L\G, (16a)

Blocking-Threat Outcome if a` = J`(0,yes), for all `∈L\G, (16b)

Partial Compensation Outcome if a`<J`(1,no)− c` and ah >Jh(0,yes) for some `,h∈L\G.
(16c)

In a No-Deforestation Outcome, all locals are better off than in the status quo. A local who prefers

the incentive `∈ G is allocated at least the net income that he could have earned with deforestation
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J`(1,no)− c`, whereas a local who prefers deforestation ` ∈ L \ G has at least his net income with

the incentive and no deforestation J`(0,yes). Hence, every local who prefers the incentive is strictly

better off than in the status quo with no deforestation and no incentive, and a local who prefers

deforestation is also strictly better off than in the status quo if the incentive is strictly positive(
J`(0,yes) > J`(0,no)

)
. In a “Compensation” Outcome, all locals are allocated at least their net

income under deforestation J`(1,no)− c`, being compensated for not deforesting. In a “Blocking-

Threat” Outcome, deforestation is prevented through the threat of being blocked, so locals that

prefer deforestation are allocated exactly their net incomes with the incentive and no deforestation.

In a “Partial Compensation” Outcome, only some of the locals that prefer deforestation are being

compensated, while the others do not deforest due to the threat of being blocked. Theorems 1

and 2 show that Compensation, Blocking-Threat, and Partial Compensation are the only types of

No-Deforestation Outcome that can be in the core.

Theorem 1 characterizes the core under the area no-deforestation condition N.

Theorem 1. Assume N. If ∆L > 0 and E = ∅, the core is the set of all Compensation Outcomes.

If ∆L < 0 or E 6= ∅, the core is the set of all Deforestation Outcomes.

Theorem 1 shows that the area no-deforestation condition prevents deforestation with compensation

when the locals collectively prefer the incentive (∆L > 0) and there are no entrants (E = ∅). Due to

G 6=L, this requires utility transfer. To induce a no-deforestation equilibrium d∗ = 0, locals who prefer

the incentive must transfer utility to the locals within their coalition who prefer deforestation (locals

S ∩G transfer utility to S ∩ (L\G) in every coalition S ∈ π) so every local is fully compensated for

his missed deforestation opportunity and thus motivated to set d` = 0. This compensation mechanism

is effective exactly when the local community prefers the incentive (∆L > 0) and faces no entrants

(E = ∅). When utility transfer cannot compensate all individuals who prefer deforestation, either

because ∆L < 0 or there are entrants, a Deforestation Outcome occurs. As N produces no credible

threat of blocking, the only No-Deforestation Outcomes are Compensation ones.

Theorem 2 characterizes the core under the area regeneration condition R. While reading statements

(a-h) for the case that locals collectively prefer the incentive (∆L > 0), consider Figure 3.1. It illustrates

how the types of outcome in the core vary with the magnitude of the blocking cost η and (unless

η is small) vary with the potential for entry. Statements (a-b) address cases of low blocking cost;

Statements (c-e) and the top panel of Figure 3.1 focus on the case without entrants; Statements

(f-h) and the bottom panel focus on the case with entrants.

Theorem 2. Assume R. If ∆L > 0, there exist thresholds ηTU
1 ≤ ηTU

2 ≤ ηTU
3 ≤ ηTU

4 such that

(a) If η≤ ηTU
1 , the core is the set of Blocking-Threat Outcomes;
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(b) If ηTU
1 < η < ηTU

2 , the core contains only Blocking-Threat Outcomes and (if η >minS⊆L:∆S<0
∆L\S
|S| )

it may be empty;

(c) If E = ∅ and ηTU
2 < η < ηTU

3 , the core contains only Partial Compensation Outcomes, and it may

be empty;

(d) If E = ∅ and ηTU
3 < η≤∆G, the core contains all Compensation Outcomes, may contain Partial

Compensation Outcomes, and does not contain a Blocking Threat or Deforestation Outcome;

(e) If E = ∅ and η >∆G, the core is the set of Compensation Outcomes;

(f) If E 6= ∅ and ηTU
2 < η < ηTU

3 the core may contain Partial Compensation Outcomes, may (if

η <
∆G
|L\G|) contain Blocking Threat Outcomes, and (if η >minS⊆L:∆S<0

∆L\S
|S| ) may be empty; it

does not contain any Compensation or Deforestation Outcome;

(g) If E 6= ∅ and ηTU
3 < η < ηTU

4 , the core contains all Compensation Outcomes, may contain Partial

Compensation Outcomes, may (if η <
∆G
|L\G|) contain Blocking-Threat Outcomes, and does not

contain any Deforestation Outcome;

(h) If E 6= ∅ and ηTU
4 < η <∆G, the core contains Deforestation Outcomes, may (if η <∆L) contain

Compensation Outcomes, may (if η <
∆G
|L\G|) contain Blocking-Threat Outcomes, and may contain

Partial Compensation Outcomes.

(i) If E 6= ∅ and η >∆G, the core is the set of Deforestation Outcomes.

If ∆L < 0, the core contains only Deforestation Outcomes and may be empty.
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Figure 3.1 Types of outcome in the core under the regeneration condition R, when locals collectively prefer to protect
the forest (∆L > 0), as a function of the blocking cost η. A solid bar indicates that the core is nonempty. Slashed grey/green
indicates that the core may be empty and contains only No-Deforestation Outcomes. A “X” indicates that a particular welfare
type (Compensation vs. Partial-Compensation vs. Blocking-Threat) of No-Deforestation Outcome is in the core, whereas a “♦”
indicates that the particular welfare type can be in the core.
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Theorem 2 shows that the area regeneration condition R can prevent deforestation when locals

collectively prefer the incentive (∆L > 0). Let us focus on the case ∆L > 0 and, to understand the

various mechanisms by which R prevents deforestation, consider the expressions for the thresholds:

ηTU
1 := min

S⊆L:∆S<0

∆L\S
|S|+ |E|

, ηTU
2 :=

∆G
|L \ G|+ |E|

, ηTU
3 := max

S⊂L

∆S

|L \S|+ |E|
, ηTU

4 := max
S⊆L

∆S

|L \S|+ |E|
.

Without entrants (E = ∅), the area regeneration condition prevents deforestation. When the blocking

cost is sufficiently low (η < ηTU
2 ), the credible threat of blocking prevents deforestation: any outcome

with deforestation or involving utility transfer from locals in G who prefer the incentive would be

dominated by all such locals forming a coalition G, which would strictly increase their net income

and create a credible threat of blocking all other locals L\G; hence only Blocking-Threat Outcomes

are in the core. As the blocking cost exceeds ηTU
2 , the locals in G can no longer profitably block a

coalition L \ G, so locals in G must transfer utility to some locals in L \ G to attract them into a

coalition with a credible blocking threat, which leads to Partial Compensation Outcomes. As the

blocking cost exceeds ηTU
3 , no coalition S could be formed that could profitably block all the other

locals L\S, which leads to all Compensation Outcomes appearing in the core, and possibly some

Partial Compensation Outcomes. When the blocking cost is so high that blocking could never occur

(η >∆G), condition R is equivalent to N, and the core is the set of Compensation Outcomes.

The case with entrants (E 6= ∅) has several similarities to the case without entrants. As discussed

above, the core only contains Blocking-Threat Outcomes if the blocking cost is sufficiently low

(η < ηTU
2 ); at larger blocking cost values, the core continues to contain Blocking-Threat Outcomes

provided the locals who prefer the incentive have a credible threat of blocking all other locals

(η <
∆G
|L\G|), and it also includes outcomes with some degree of compensation: Partial Compensation

Outcomes again emerge if η exceeds ηTU
2 and Compensation Outcomes emerge if η exceeds ηTU

3 .

However, the values of ηTU
1 , ηTU

2 , and ηTU
3 decrease with the number of entrants, which signifies that

each of these different regimes occurs at lower levels of the blocking cost η. One can see this shift in

ηTU
1 , ηTU

2 , and ηTU
3 from the case without entrants to the case with entrants in Figure 3.1.

The important difference is that with entrants, deforestation can occur even though the local

community prefers the incentive (∆L > 0), as illustrated in Figure 3.1. When the blocking cost exceeds

ηTU
4 , the core contains Deforestation Outcomes because no coalition of locals can profitably block

the remaining locals and entrants from engaging in deforestation. For η ∈ (ηTU
4 ,∆G), Deforestation

Outcomes co-exist in the core with No-Deforestation Outcomes, and the Deforestation Outcomes

are maintained by locals who prefer deforestation (L\G) transferring sufficient utility to locals who

prefer the incentive to induce them to engage in deforestation. Those transfers cease for η >∆G

because blocking would never occur, so the core contains only Deforestation Outcomes.

Another difference is that the regeneration condition R can prevent deforestation with compensation

only without entrants. However, with entrants and without entrants, at moderate levels of the
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blocking cost, the core with R contains Compensation Outcomes and another type of No-Deforestation

Outcome. In that case, the regeneration condition R does not achieve compensation because, by our

conservative definition, that would require having only Compensation Outcomes.

With the regeneration condition R, the core may be empty (locals may fail to coordinate and

transfer utility). When the local community collectively prefers the incentive (∆L > 0), the core may

be empty only if η ∈ (ηTU
1 , ηTU

3 ). At those intermediate levels of blocking cost, a No-Deforestation

Outcome may be dominated by a Deforestation Outcome wherein a group of locals B ⊆ L \ G

who prefer deforestation transfer utility to locals B′ ⊆ G to induce them to join coalition B ∪B′

that collectively prefers deforestation (∆B∪B′ < 0) and could not be blocked by the residual locals

L \ (B ∪ B′). However, the core cannot contain a Deforestation Outcome because it would be

dominated by the entire community of locals forming the grand coalition L and protecting the forest,

which would improve the community’s collective net income.

When the local community collectively prefers deforestation (∆L < 0), area regeneration condition

R cannot prevent deforestation: any core outcome is a Deforestation Outcome. However, the core may

be empty. Consider an example with no entrants and three locals L= {f, g,h}; g prefers the incentive

(∆g > 0); the other two prefer deforestation, to the extent that ∆g+∆f < 0 and ∆g+∆h < 0, meaning

that either f or h could transfer enough utility to induce g to participate in deforestation rather

than block others’ production. In this case, f would refuse to join a coalition to transfer utility to g,

hoping to free-ride on h doing so (and the same would be true for h). Thus, despite having ∆L < 0,

the locals might not engage in deforestation.

The following corollary to Theorems 1 and 2 summarizes the performance of the area conditions.

Corollary 2. With coordination and utility transfer, area conditions N and R prevent defor-

estation only if locals collectively prefer the incentive (∆L > 0), in which case: (a.) Without entrants,

N and R prevent deforestation; N achieves compensation and R achieves compensation if η >∆G;

(b.) With entrants, N cannot prevent deforestation, whereas R prevents deforestation if η < ηTU
4 .

Corollaries 1 and 2 show that R is better than N to prevent deforestation. However, in the more

limited case that N also prevents deforestation (with coordination and utility transfer, no entrants,

and locals that collectively prefer the incentive) N is better for achieving compensation. Assuming

locals collectively prefer the incentive, R prevents deforestation at higher levels of the blocking cost

with coordination and utility transfer than without: ηNC
1 ≤ ηTU

2 and the inequality is strict if |G|> 1.

4. Selecting an Incentive and a Forest Protection Condition

This section provides guidance on how to select an incentive and a forest protection condition

C∈ {I,N,R} to prevent deforestation and to achieve compensation, respectively. For each of those

two purposes, we recommend the best among the three candidate conditions and the corresponding
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feasible set of incentives to use. The best condition is one with the largest feasible set of incentives;

in most cases, this exists and is unique. We relax assumption (3) to allow for incentives with

φ` ≥ δ` for every `∈L, (17)

and remind the reader that δ` denotes the value to local ` of engaging in deforestation, and φ` denotes

the value of the incentive to local ` if he doesn’t engage in deforestation. Figure 4.2 summarizes our

recommendations. One could use Figure 4.2 to check whether a candidate non-monetary incentive

(e.g., land tenure) or practical financial incentive (e.g., RSPO price premium) will work. We also

derive the idiosyncratic payment to each local `∈L that would minimize the total payment
∑

`∈L φ`

required to prevent deforestation and achieve compensation, respectively. (Admittedly, implementing

that idiosyncratic payment to each local may be prohibitively difficult.) The best forest protection

condition and feasible set of incentives (and hence the minimum total payment) depend on the

potential for entry and whether locals can coordinate and transfer utility, so we will discuss each of

the four scenarios in turn. The EC provides formal statements (Propositions 1-4) of all results in this

section, and their proofs, leveraging Corollary 1 and Theorems 1 and 2.
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Figure 4.2 Recommended forest protection condition C ∈ {I,N,R} and corresponding feasible set of incentives. Each
inequality has a distinct color to highlight the similarities and differences among the feasible sets of incentives.

Without Coordination and Utility Transfer Among Locals, and Without Entrants, to

prevent deforestation, one should offer an incentive conditional on area regeneration R with

φ` > δ` + η · (|L|− 1) for at least one `∈L (18)

or offer an incentive conditional on I with

φ` > δ` for every `∈L. (19)
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The area regeneration condition R prevents deforestation with the minimum total payment unless

the blocking cost is so large that η > (
∑

`∈L δ`−min`∈L δ`)/(|L| − 1). With R, the minimum total

payment is min`∈L δ` + η · (|L| − 1). That total payment must go to just one local ` who would

benefit least from deforestation and zero payment to the others. Unfortunately, that is worst for

distributive justice, especially in the common circumstance that the local who would benefit least

from deforestation is the wealthiest. With I, the minimum total payment is just above
∑

`∈L δ`.

With I, an incentive with (19) would prevent deforestation with compensation. The minimum

total payment to achieve compensation is the same as to prevent deforestation, just above
∑

`∈L δ`.

However, (19) requires a perfect incentive that directly compensates every local to forgo deforestation.

An easier approach might be to promote cooperation, for example, by dividing the area so that locals

in each sub-area can coordinate and transfer utility among themselves and applying R or N.

Without coordination, N cannot prevent deforestation.

Without Coordination and Utility Transfer Among Locals, and With Entrants, to prevent

deforestation, one should offer an incentive conditional on area regeneration R with

φ` > δ` + η · (|L|− 1 + |E|) for at least one `∈L. (20)

The minimum total payment to prevent deforestation with R is min`∈L δ` + η · (|L| − 1 + |E|), and

that total payment must go to just one local ` who would benefit least from deforestation.

To prevent deforestation with compensation, one should offer an incentive conditional on area

regeneration R that satisfies (20) and (19). Paying φj = δj + η · (|L| − 1 + |E|) to one (arbitrarily

chosen) local j and paying φ` = δ` to each other local `∈L\ {j} would minimize the total payment.

With entrants, the other conditions I and N cannot prevent deforestation.

With Coordination and Utility Transfer Among Locals, and Without Entrants, to prevent

deforestation, one should offer an incentive with

∑
`∈L φ` >

∑
`∈L δ`. (21)

and use area no-deforestation condition N or area regeneration condition R. An incentive conditional

on I must satisfy (19) to prevent deforestation, which is stronger than (21), so N and R are best.

To achieve compensation, N is the unique best condition. An incentive with (21) conditional on

N will prevent deforestation with compensation. Indeed, with no entrants, the locals’ ability to

transfer utility enables N to prevent deforestation and promote distributive justice, as N incentivizes

locals to transfer utility so that every local is compensated for not engaging in deforestation. The

feasible set of incentives is strictly smaller with R than N, and is strictly smaller with I than R. An

incentive conditional on R prevents deforestation with compensation if and only if (21) and (19)
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hold or (21) and
∑

`∈G φ` < η+
∑

`∈G δ` hold. An incentive conditional on I prevents deforestation

with compensation if and only if (19) holds.

The minimum total payment to prevent deforestation or to prevent deforestation with compensation

is just above
∑

`∈L δ`. Remarkably, this is achieved with N and any payments that satisfy (21).

Recall, for comparison, that when locals are unable to transfer utility, the minimum total payment

to prevent deforestation would be min`∈L δ` + η · (|L|− 1) and the minimum total payment to achieve

compensation would be
∑

`∈L δ` + η · (|L|− 1). We conclude that utility transfer reduces the cost to

the interested party to achieve compensation, and it also reduces the cost to prevent deforestation if

and only if the blocking cost is sufficiently large: η > (
∑

`∈L δ`−min`∈L δ`)/(|L|− 1).

With Coordination and Utility Transfer Among Locals, and With Entrants, to prevent

deforestation, one should offer an incentive conditional on area regeneration R with∑
`∈L φ` >

∑
`∈L δ` (22a)∑

i∈H φi >
∑

i∈H δi + η · (|L|− |H|+ |E|) for some H ⊆L. (22b)

In such a case, Falcon et al. (2022) conducted an RCT in offering payment to a village community

conditional on no major forest clearing by fire in the village for a year. This failed, which Falcon et

al. attribute to forest clearing by entrants and insufficient payment to the local community. However,

with blocking interpreted as locals putting out fires quickly, preventing a major clearing, and allowing

the forest to regenerate, Equation (22b) suggests that the intervention might have failed because η,

the cost of blocking, was prohibitively high. Providing locals with a fire-alert system could reduce

the cost of blocking and make the intervention successful.

The minimum total payment to prevent deforestation is max
(∑

`∈L δ`,
∑

`∈H δ`+η ·(|L|−|H|+ |E|)
)

and is achieved with a payment of
∑

`∈H φ` =
∑

`∈H δ` + η · (|L|− |H|+ |E|) to the locals in H and

an arbitrary split of any remaining payment
(∑

`∈L\H δ` − η · (|L| − |H|+ |E|)
)+

among all locals;

the set H includes all locals with values from deforestation strictly less than the blocking cost η

(when such locals exist) or a local with the lowest value from engaging in deforestation otherwise, i.e.,

H := {`∈L : δ` < η}∪ {i} for some i∈ arg min`∈L δ`. This favors locals with low value from engaging

in deforestation and so performs poorly from a distributional justice perspective. The potential

for entry increases the minimum total payment to prevent deforestation, for sufficiently high η, by

(η · (|L| − |H|+ |E|)−
∑

`∈L\H δ`)
+. Like in the case without entrants, utility transfer reduces the

cost to prevent deforestation if and only if the blocking cost is sufficiently large, and the threshold

decreases with |E|. Utility transfer reduces the cost to prevent deforestation if |E| is sufficiently large.

To prevent deforestation with compensation, one should offer an incentive conditional on area

regeneration R with (22a), (22b), and (19). The minimum total payment to achieve compensation

is
∑

`∈L δ` + η · |E| and requires paying at least φ` = δ` to each local, with the additional amount

η · |E| distributed arbitrarily among the locals. The potential for entry strictly increases the minimum

payment to prevent deforestation with compensation by η · |E|, the cost for locals to block all entrants.
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5. Illustration in Indonesia

East Kalimantan, Indonesia, has extensive forests at risk of conversion to oil palm farms. In 58

villages therein (mapped in Figure EC.1) we surveyed smallholder palm farmers in order to evaluate

the potential for a price premium for palm fruit conditional on C∈ {I,N,R} to prevent deforestation

and achieve compensation, respectively. In §5.1, we calibrate our model for each of the 58 villages. In

§5.2 we consider the case without entrants (E = ∅) because I and N are useful only in that case. In

§5.3, we find that the area regeneration requirement R is highly robust to deter entrants.

5.1. Model Calibration

A local ` is a palm farmer. Recall that his value from engaging in deforestation is δ` := J`(1,no)− c`−
J`(0,no) and from the incentive is φ` := J`(0,yes)−J`(0,no), wherein J`(0,no) represents his status

quo income, J`(0,yes) his income with no deforestation and the incentive, and J`(1,no)− c` his net

income with deforestation. We calibrate those model parameters for each ` to be representative of

one of the 391 idiosyncratic palm farmers in our survey, distributed in 58 villages (with the number

of farmers |L| ranging from 35 to 295). Importantly, we apply robust Data Envelope Analysis (DEA)

to over- rather than under-estimate each farmer’s idiosyncratic value with deforestation δ`, in order

to be conservative in predicting that an incentive and condition would prevent deforestation.

The Table in Figure 5.3 describes and assigns notation for data we use from our survey. We use plot-

level data because half of surveyed farmers have more than one plot, and tree ages, production yields,

and (in some cases) selling prices and production costs differ among a farmer’s plots. Production is

measured in metric tons of fresh fruit bunches (tFFB). Farmers generally reported their significant

production costs as those for harvest labor and transport of fruit from the plot to the mill for sale.

Half of the surveyed farmers did not report an interest rate to borrow money, so we substitute the

median reported interest rate for β`; we use an analogous procedure in the few cases that the price,

transport cost, or harvest cost is missing for a plot.

Lastly, we assume that any farmer can convert forest to a new plot by incurring cost cdef = 375 USD

per hectare, comprised of the costs to clear forest by fire (5 USD/ha per Falcon et al. 2022) and to

plant saplings (2.96 USD/sapling and 125 saplings per hectare per our survey).

Palm fruit production varies with tree age (years elapsed since planting) as shown in Figure 5.3:

production is zero for two years after planting, peaks after eight years, and declines thereafter.

Status Quo Income from Existing Plots. Our estimate of net cash flow for farmer ` from existing

plot i∈P` in a future year when the trees reach age a≥ a`,i and with fruit price p is

Ie` (i, a, p) = (p−h`,i− τ`,i) · q`,i · ya/ya`,i , for any a≥ a`,i. (23)

Here, ya/ya`,i accounts for the predictable variation in fruit production with the age of the trees. Our

estimate of the farmer’s status-quo income without deforestation and without the incentive is

J`(0,no) =
∑T

t=1(1 +β`)
−t∑

i∈P`
Ie` (i, a`,i + t, p`,i). (24)
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Definition Mean Range
plot area A`,i (hectares) 2 0.3-17.5

tree age a`,i (years) 9.9 1-40
production q`,i (tFFB/year) 41.3 0.5-480

price p`,i (USD/tFFB) 90 51-129
transport cost τ`,i (USD/tFFB) 11.8 1-29.6
harvest cost h`,i (USD/tFFB) 16 0.2-29.6

interest rate β` (% /year) 16.5 2.6-102
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Figure 5.3 Data by Plot and Farmer (Left): The 391 survey participants produce palm fruit on 683 separate plots: i∈P`
indicates that plot i is among farmer `’s plots. Yield Multiplier (Right): The attainable yield for oil palm in Indonesia as a function
of tree age a is taken from Hoffmann et al. (2014) for tree ages a of 1-25 years and linearly extrapolated for the later years. Yield
multiplier ya is the attainable yield divided by the maximum attainable yield that occurs at age 8 years. In other words, yield
multiplier ya is the attainable yield normalized to take values between zero and (at age 8 years) one.

We assume that a farmer discounts cash flows according to his interest rate to borrow money and

uses a finite planning horizon T . All results in this section are for T = 20 years, and §EC.3.3 shows

that (due to discounting) the results exhibit remarkably little variation with any choice of planning

horizon larger than T=15. We assume a farmer’s expected future prices and costs are the same as

those he reported in the survey. This is not an unreasonable representation of information available

to a smallholder farmer and could even be justified in a stochastic model with a martingale structure.

Income from Existing Plots with the Incentive. The incentive is a price premium p∗ per tFBB,

so farmer `’s estimated income without deforestation and with the incentive is

J`(0,yes) =
∑T

t=1(1 +β`)
−t∑

i∈P`
Ie` (i, a`,i + t, p`,i + p∗), (25)

and his value from the incentive is

φ`(p
∗) = J`(0,yes)−J`(0,no) = p∗ ·

∑T

t=1(1 +β`)
−t∑

i∈P`
q`,i · y(a`,i+t)/ya`,i . (26)

The maximum RSPO price premium contemporaneous with our survey is 30 USD/tFFB.

Income with Deforestation. We conservatively (over) estimate the area of forest x` that farmer `

would convert to palm farm, and his resulting net income J`(1,no)− c`.

The first step is to estimate an efficient production frontier u(A): maximum annual production

quantity of palm fruit for a farmer with total land area A and trees at peak productive age 8

years. Scaling up the production quantity q`,i reported by farmer ` (for trees aged a`,i) by a factor

y8/ya`,i = 1/ya`,i ≥ 1, we estimate the total peak production quantity that farmer ` could have produced

on all his existing plots if the trees were at the peak productive age:

q̂` :=
∑
i∈P`

q`,i/ya`,i . (27)
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Figure 5.4 (Left) Scatter plot of each farmer’s total peak production quantity q̂` and total land A` =
∑
i∈P`

A`,i, with
u(A), the robust efficient production frontier of these points estimated using m-estimator DEA. (Right) Histogram of a farmer’s
estimated optimal area to deforest x∗; the leftmost bar is for x∗ = 0.

Each point in Figure 5.4 (left) plots a farmer’s total peak production quantity q̂` and total land

A` =
∑

i∈P`
A`,i. Estimated efficient production frontier u(A) is the robust concave envelope of those

points (blue line) calculated by m-estimator robust DEA, as detailed in §EC.3.1.

Second, we use that efficient production frontier to (over) estimate the net income that farmer `

could generate by deforesting a plot of area x`. The estimated annual production quantity for farmer

` from the deforested plot of area x` with trees at peak productive age is:

q̂def
` (x`) := u

(∑
i∈P`

A`,i +x`

)
−u
(∑

i∈P`
A`,i

)
, (28)

and with trees of arbitrary age a it is q̂def
` (x`) · ya. Hence, in the ath year after deforesting the land

and planting seedlings, the estimated net cash flow from the new plot is:

Id` (x`, a) = (p`−h`− τ `) · q̂def
` (x`) · ya, for any a≥ 0, (29)

where p` := maxi∈P` p`,i, h` := mini∈P` h`,i, and τ ` := mini∈P` τ`,i denote the largest price obtained

and lowest costs incurred by farmer ` on his existing plots, respectively.

At last, we (over) estimate the net income for ` with deforestation and without the incentive by

J`(1,no)− c` = max
x`≥0

{∑T

t=1(1 +β`)
−t

[∑
i∈P`

Ie` (i, a`,i + t, p`,i) + Id` (x`, t)

]
− cdef ·x`

}
, (30)

and the value from deforestation δ` as,

δ` = J`(1,no)− c`−J`(0,no) =
∑T

t=1(1 +β`)
−tId` (x∗` , t)− cdef ·x∗` , (31)

where cdef = 375 USD/hectare is the cost to clear forest and plant seedlings. With x∗` denoting the

solution to (30), Figure 5.4 (right) shows the distribution of x∗` among farmers. Nearly all (387 out of

391) farmers would benefit from some deforestation. None would deforest more than 20 hectares.

Blocking Cost. We consider the range η ∈ (0,3000] USD. The upper bound 3000 USD is the cost to

use bulldozers and excavators to clear 20 hectares of light forest (Falcon et al. 2022). Lower blocking

cost could be achieved, for instance, by cutting palm seedlings with a chainsaw (Villadiego 2017).
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5.2. Performance of a Price Premium Conditional on C∈ {I,N,R}, Without Entrants

Figure 5.5 illustrates the mismatch inherent in a price premium incentive to prevent deforestation:

the largest value from the incentive goes to farmers with the least value from deforestation, whereas

farmers with the least land and largest value from deforestation gain the least value from the incentive.

Due to mismatch and insufficient magnitude of RSPO price premium p∗ = 30 USD/tFFB, at that

price premium, 94% of the farmers prefer deforestation (have ∆` = φ`− δ` < 0).
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Figure 5.5 Scatter plots of a farmer’s value δ` from engaging in deforestation, value φ` from a price premium p∗= 30
USD/tFFB, and preference for deforestation ∆` as a function of the farmer’s total land A`.

We apply the area no-deforestation condition N and area regeneration condition R at a village

level. In each of the 58 villages, all palm farmers in the village get the price premium on all their

production if and only if the specified condition holds for that village. For each of those villages,

§EC.3.2 reports the number of households in the village that are palm farmers, estimated from

Indonesia census data, and we set |L| for the village to that number. We assume that the surveyed

farmers from each village are representative of the other farmers in their village and replicate their

model parameters to characterize the set of farmers `∈L in the village.

With RSPO price premium p∗ = 30 USD/tFFB, only area regeneration condition R can possibly

prevent deforestation. In each of the 58 villages, farmers collectively prefer deforestation (∆L < 0) so

R can prevent deforestation in a village only if the farmers cannot coordinate and transfer utility. In

that case, R prevents deforestation in 23 villages if the blocking cost η≤ 10 USD, in only one village

at η= 500 USD, and in none for η≥ 1,060 USD.

What is the minimum uniform price premium that would prevent deforestation and achieve

compensation, respectively, in all 58 villages? From (26) the value of the incentive φ`(p
∗) to each

farmer ` increases linearly with the price premium p∗. Depending on the condition C ∈ {I,N,R}

and the setting, we determine the minimum value of p∗ that satisfies the necessary requirements

in (18), (19) or (21), respectively, for all villages. Figure 5.6 shows the minimum uniform price

premium for each condition and setting (except N in the setting without coordination and TU, where

N cannot prevent deforestation). The minimum uniform price premium to prevent deforestation is
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much lower for area regeneration condition R (and N with coordination and TU) than for individual

condition I. For R it is lower with coordination and TU than without, if and only if the blocking cost

η exceeds 630 USD. As in §4, TU reduces the cost to an interested party to prevent deforestation if

and only if the blocking cost is sufficiently large. For R without coordination and TU, the minimum

uniform price premium to prevent deforestation increases with η, from 471 USD/tFFB at η=1 USD

to 2496 USD/tFFB at η=3000 USD. For R with coordination and TU, the minimum uniform price

premium is invariant with η. To achieve compensation, the minimum uniform price premium is the

same for R and I, and (assuming coordination and TU) much lower for N.
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Figure 5.6 Minimum uniform price premium to prevent deforestation (left) and achieve compensation (right) in all villages.

The village-specific minimum price premium to prevent deforestation and achieve compensation,

respectively, differ among villages. See Figure 5.7 and Figure 5.8. If farmers can transfer utility, a

price premium below 250 USD prevents deforestation (with R) and achieves compensation (with

N) in most villages. That is less than a third of the 800 USD/tFFB uniform price premium needed

to prevent deforestation in all villages. This suggests that using area-specific incentives in adjacent

areas could reduce the cost to prevent deforestation and achieve compensation in this region.

5.3. Entrants Deterred: Robustness of Area Regeneration Condition R

Without coordination and TU, if a price premium p∗ conditional on R prevents deforestation with

no entrants (E = ∅), it also prevents deforestation with up to

M :=
⌊
max
`∈L

(φ`(p
∗)− δ`)/η

⌋
+ 1− |L| (32)

entrants. In other words, M is the maximum number of (potential) entrants deterred. Expression

(32) for M holds whether or not the price premium achieves compensation. With coordination and

TU, if a price premium p∗ conditional on R would prevent deforestation with no entrants (E = ∅), it

would also prevent deforestation with up to

MTU :=
⌊∑

`∈H

(
φ`(p

∗)− δ`
)
/η
⌋
−|L|+ |H| with H = {`∈L : φ`(p

∗)> δ`− η} (33)
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Figure 5.7 Fraction of villages in which a condition prevents deforestation (left) and achieves compensation (right) as a
function of the price premium. For R, this is at η= 3,000 USD; the fraction of villages would be higher at lower blocking cost.
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Figure 5.8 Minimum price premium to prevent deforestation and, with N, coordination and TU, achieve compensation.

entrants; if it achieves compensation, it would prevent deforestation with compensation with up to

M̄TU :=
⌊∑

`∈L

(
φ`(p

∗)− δ`
)
/η
⌋
≥MTU (34)

entrants. The maximum number of entrants deterred (M , MTU or M̄TU depending on the setting)

grows infinitely large as the blocking cost η decreases towards zero, decreases with the blocking cost

η, and increases with the price premium p∗.

The maximum number of entrants deterred is remarkably large, even with the minimum price

premium assuming no entrants E = ∅. In Table 5.1, “uniform p∗” refers to the minimum uniform

price premium conditional on R that prevents deforestation and achieves compensation, respectively,

in all 58 villages, assuming E = ∅. See Figure 5.6 for the exact values. Analogously, “village-specific

p∗” refers to each village’s minimum price premium conditional on R to prevent deforestation and

achieve compensation, respectively, assuming E = ∅. Only in the setting without coordination and

TU, to calculate the minimum price premium conditional on R that prevents deforestation requires
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an assumption about the blocking cost η; we assume η = 3000 USD ensuring the price premium

prevents deforestation for all η ∈ (0,3000]. For each village, we calculate the maximum number of

entrants deterred (M , MTU or M̄TU depending on the setting) at blocking cost values η= 1000 and

η = 3000. The table shows the range over all villages in each setting. Achieving compensation or

using a uniform price premium for all villages requires a higher price premium, which increases

the maximum number of entrants deterred. Without coordination and TU, the maximum number

of entrants deterred M is large except in the boundary case with blocking cost η = 3000 USD2.

Coordination and TU significantly reduce the minimum price premium but nevertheless increase

the maximum number of entrants deterred at the minimum price premium. Indeed, MTU and M̄TU

are very large in all settings and all villages; the village with the least farmers (only 35 farmers)

consistently has the least MTU and M̄TU , and yet even with maximum blocking cost η=3,000 USD

and the village-specific minimum price that prevents deforestation assuming no entrants, that small

village deters up to MTU = 194 entrants, over five times the number of farmers in the village!

How does coordination and TU make the performance of a price premium conditional on R so

highly robust to potential entrants? With coordination and TU, a price premium conditional on R

must be large enough that ∑
`∈L(φ`(p

∗)− δ`)> 0 (35)

to prevent deforestation. In each of the 58 villages, at the village-specific minimum price premium to

prevent deforestation (determined by 35), the subset of farmers H = {` ∈ L : φ`(p
∗)> δ`− η} have

large
∑

`∈H(φ`(p
∗)−δ`) and hence a credible threat to block all the other farmers plus a large number

of potential entrants, even at the maximum blocking cost η = 3000 USD. This entry deterrence

rests on the heterogeneity of the farmers. Additionally, for any price premium that satisfies (35),

coordination and utility transfer enables farmers to deter more entrants: MTU and M̄TU are greater

than M . Without coordination and TU, blocking of entrants would have to be done by just one

farmer with the greatest φ`(p
∗)− δ`, whereas through coordination and utility transfer, farmers can

pool their resources to block, which deters more entrants. This echoes the observation in §4 that TU

reduces the cost to prevent deforestation when the number of entrants is large.

We conclude that – especially when farmers are able to coordinate and transfer utility– the

performance of a price premium under area regeneration condition R is robust to entry.

2 Even in this boundary case, M can be considerable. With the uniform p∗, M is large except for the one village whose village-
specific minimum price premium to prevent deforestation exactly equals that uniform p∗. With village-specific p∗, M is large with
price premiums that achieve compensation, except in the 13 villages where these prices match the corresponding minimum price
premiums needed to prevent deforestation with no entrants.
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Prevent Deforestation Achieve Compensation
η= 1,000 η= 3,000 η= 1,000 η= 3,000

Uniform p∗
Without TU 338 - 11,453 0 - 3,716 869 - 22,479 212 - 7,406
With TU 2,744 - 264,362 905 - 88,120 27,775 - 1,707,419 9,258 - 569,139

Village-specific p∗
Without TU 68 - 588 0 - 0 131 - 7,957 0 - 2,550
With TU 626 - 15,261 194 - 4,918 2,470 - 357,614 823 - 119,204

Table 5.1 Range among villages of the maximum number of entrants deterred, with the minimum price premium calculated
assuming no entrants E = ∅ and, in the setting without TU, a blocking cost of 3000 USD.

6. Conclusions: Reasons and Guidelines to Use Area Conditions

Area conditions can work with imperfect individual incentives. Practical incentives such as a price

premium or land tenure are imperfect: the value they provide to an individual increases with his

landholding, whereas an individual with less land may benefit more from engaging in deforestation.

With an incentive that is insufficient for some individuals to forgo deforestation, an area condition

can potentially prevent deforestation and promote distributional justice.

Area conditions can be implemented with less information and less effort than individual conditions

require. Imagine a village with forest and hundreds of smallholder farmers. Preventing deforestation

in the village with individual conditions requires gathering information about each individual’s

idiosyncratic value from deforestation, targeting an adequate incentive to each individual, and

monitoring each individual. Those difficulties scale up as interested parties aim to prevent deforestation

in supply sheds and jurisdictions with millions of smallholders. In contrast, implementing our proposed

area conditions may only require information about the aggregated value of deforestation to the local

smallholders overall, providing an overall adequate incentive, and satellite remote monitoring for

deforestation in the area. In contrast to individual conditions, an area condition enables a greater

range of easy-to-implement incentives to be effective. Figure 4.2 fully characterizes the range of

incentives that are effective with our proposed area conditions.

If locals can coordinate and transfer utility and there are no potential entrants, we recommend

providing an incentive conditional on no deforestation in the area N, especially to promote distributive

justice. The incentive need only be large enough that the locals, collectively, are better off with

no deforestation in the area. Then, the incentive conditional on N prevents deforestation with

compensation, as locals who prefer the incentive transfer utility to those who otherwise would prefer

deforestation so that each local becomes better off than with deforestation. Insofar as the poorest

locals with the least landholdings have the most to gain from deforestation, compensating each local

for not engaging in deforestation promotes distributive justice. Support for community education

and activities could help locals cooperate and transfer utility to thus prevent deforestation with

compensation in their area. The caveat with the area no deforestation condition is that if an entrant

were to burn forest in the area, the locals would lose their incentive, and the scheme would fail.

With potential entrants, especially in regions prone to illegal deforestation, we recommend an area

regeneration condition R: if deforestation occurs on any land in the area, economic use is blocked
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and forest regenerates on that land. If such blocking is not too costly, a positive incentive conditional

on area regeneration R prevents deforestation. If locals cannot transfer utility, this is true even if the

locals collectively would be better off with deforestation, and few prefer the incentive to deforestation.

In contrast, if locals can transfer utility, the incentive should be generous enough to make them

collectively better off than with deforestation (lest they coordinate on deforestation). The ability to

transfer utility helps locals coordinate blocking so that an incentive conditional on area regeneration

prevents deforestation at even higher blocking costs and with more potential entrants than if locals

could not transfer utility. Indeed, in the Indonesian context, we found that if locals can coordinate and

transfer utility among themselves, then a price premium conditional on area regeneration is highly

robust to deter potential entrants; that robustness occurs even with the minimal price premium that

barely makes the local community better off than with deforestation.

To complement the area regeneration condition R, consider supporting locals with technology,

equipment, and training to immediately detect and halt any fire or other forest-clearing activity,

as a cheap means of blocking. This could mitigate the widespread tragedy that even more forest is

cleared (often by escaped fire) than actually farmed (Pendrill et al. 2022). The Falcon et al. (2022)

experiment should be replicated with such support.

To prevent deforestation with compensation, if locals can coordinate and there are potential

entrants, we recommend a sufficiently generous and well-targeted incentive to compensate each local

to forgo deforestation, conditional on area regeneration R. Compensation could be achieved with an

incentive conditional on R that is not well-targeted, but only at moderate levels of the blocking cost,

with intervention to promote benefit-sharing among locals.

Though our analysis takes the area as given, the results suggest guidelines for choosing the area(s)

to apply an area condition. The first is to choose an area wherein the locals can coordinate and

transfer utility, such as a village in Indonesia. Prior initiatives to prevent deforestation in such a

small area caused leakage, whereas in a larger area, the many locals therein are unable to coordinate.

That tension motivates a second guideline: to mitigate leakage, choose multiple adjacent areas

and implement an area condition within each. Third, choose multiple adjacent areas to cover a

jurisdiction and engage the government therein to prevent entrants to the jurisdiction from engaging

in deforestation (enabling use of the area no deforestation condition N) or to support blocking

(complementing the area regeneration condition R).

In implementing the new regulation to prevent tropical deforestation (European Commission 2023),

the EU should embrace a role for area conditions. In principle, a firm could comply with the EU

regulation by tracing its commodity input to an area that meets the area regeneration condition

retroactive to 2020, i.e., in which no production occurs on land deforested since 2020.
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Nagarajan M, Sošić G (2008) Game-theoretic analysis of cooperation among supply chain agents: Review and extensions.

European journal of operational research 187(3).

Ng JSC, Chervier C, Ancrenaz M, Naito D, Karsenty A (2022) Recent forest and land-use policy changes in Sabah,

Malaysian Borneo: Are they truly transformational? Land Use Policy 121.

Orsdemir A, Hu B, Deshpande V (2019) Ensuring corporate social and environmental responsibility through vertical

integration and horizontal sourcing. M&SOM 21(2).

Pay K, Singhvi S, Zheng Y (2022) Improving cash-constrained smallholder farmers’ revenue: The role of government

loans. Available at SSRN 4135868 .

Pendrill F, Gardner TA, Meyfroidt P, Persson UM, Adams J, Azevedo T, Lima MGB, Baumann M, Curtis PG, Sy VD,

Garrett R, Godar J, Goldman ED, Hansen MC, Heilmayr R, Herold M, Kuemmerle T, Lathuillière MJ, Ribeiro V,

Tyukavina A, Weisse MJ, West C (2022) Disentangling the numbers behind agriculture-driven tropical deforestation.

Science 377(6611).

Qian X, Olsen TL (2020) Operational and financial decisions within proportional investment cooperatives. M&SOM

22(3).

Qian X, Olsen TL (2022) Contractual coordination of agricultural marketing cooperatives with quality provisions.

M&SOM 24(6).



32 Xavier Warnes, Joann de Zegher, Dan Iancu, Erica Plambeck: Engaging Locals to Protect Forests

Reuters (2023) Malaysia palm oil, rubber farmers file eu petition opposing deforestation law. Online, URL https:

//tinyurl.com/ymdb7xh5, accessed 9-30-2023.

Ruf F, Schroth G, Doffangui K (2015) Climate change, cocoa migrations and deforestation in west Africa: What does

the past tell us about the future? Sustainability Science 10(1).

Santika T, Wilson KA, Budiharta S, Kusworo A, Meijaard E, Law EA, Friedman R, Hutabarat JA, Indrawan TP,

St John FAV, Struebig MJ (2019) Heterogeneous impacts of community forestry on forest conservation and poverty

alleviation: Evidence from Indonesia. People and Nature 1(2).

Slough T, Kopas J, Urpelainen J (2021) Satellite-based deforestation alerts with training and incentives for patrolling

facilitate community monitoring in the Peruvian Amazon. PNAS 118(29).

Sunar N, Swaminathan JM (2022) Socially relevant and inclusive operations management. Production and Operations

Management 31(12).

Tedesco AM, Brancalion PH, Hepburn MLH, Walji K, Wilson KA, Possingham HP, Dean AJ, Nugent N, Elias-Trostmann

K, Perez-Hammerle KV, et al. (2023) The role of incentive mechanisms in promoting forest restoration. Philosophical

Transactions of the Royal Society B 378(1867).

Thrall RM, Lucas WF (1963) N-person games in partition function form. Naval Research Logistics Quarterly 10(1).
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E-companion to Area Conditions and Positive Incentives:
Engaging Locals to Protect Forests

EC.1. Proofs of results in §3
Before proving Lemmas 1 and 2, we state and prove Lemma EC.1, where we show that Q(π,C) is

not empty, for C∈ {N,R}.

Lemma EC.1. For the cooperative game with transferable utility, consider a partition πL ∈ΠL.

Under the Area No-Deforestation condition N, if πL = {L}, E = ∅, and ∆L > 0, then Q(π,N) contains

a no-deforestation equilibrium (d∗ = 0); otherwise, Q(πL,N) contains a deforestation equilibrium

(d∗ = 1). Under the Area Regeneration condition R, if

η < η1(πL) = sup{η : ∃S ∈ π with ∆S > η |L \S ∪E|},

the set of equilibria, Q(πL,R) contains a no-deforestation equilibrium (d∗ = 0); otherwise, Q(πL,R)

contains a deforestation equilibrium (d∗ = 1). Note that this result does not require Assumption 3.

Proof of Lemma EC.1. Under N, we will consider four cases. First, if πL = {L}, E = ∅, and ∆L > 0,

then there are only two options, either d∗L = 1, or d∗L = 0. Because ∆L > 0, the optimal decision in (8)

is d∗L = 0, resulting in a no-deforestation equilibrium. Second, if πL = {L} and E 6= ∅, then, because

under N the reward does not depend on any blocking decisions (4), every entrant e∈ E would choose

d∗e = 1, according to (7). But then κN(π,d∗) = no, and the deforestation equilibrium with d∗L = 1 is

in Q(πL,N). Third, if πL = {L}, E = ∅ and ∆L ≤ 0, the solution to the maximization in (8) must

include d∗L = 1, and Q(πL,N) includes a deforestation equilibria. Finally, if π 6= {L}, then there are at

least two coalitions S1, and S2, in πL. Hence, if we consider a deforestation equilibrium, with d∗S1 = 1,

and d∗S2 = 1, we can see that κN(πL,d
∗) = no, and no unilateral deviation of any S ∈ π can change

this, which implies that, absent any reward, each coalition will engage in deforestation and therefore,

Q(πL,N) contains a deforestation equilibrium.

Under R, if η < η1(π), then there exists S ∈ π such that ∆S > η|L \ S ∪ E| ≥ 0. Thus, a no-

deforestation equilibrium (d∗,B∗) must be in Q(πL,R) because in such an equilibrium, if any coalition

S′ or entrant e unilaterally deviates and sets dS′ = 1, then coalition S would block all individuals

that deviated in the second stage.

On the other hand, if η≥ η1(πL), no coalition S exists so that ∆S > η|L \S ∪E|. We consider two

(sub)cases, the first with |πL|= 1 and the second with |πL| ≥ 2|.

First, if πL = {L}, then η≥ η1(πL) implies that ∆L ≤ η|E| or equivalently∑
`∈L

J(0,yes)− η|E| ≤
∑
`∈L

J(1,no).
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Therefore, the coalition L could not strictly profit by blocking all entrants in E in the second stage

of the game, leaving κR({L},d∗,B∗) = no. Therefore, B∗Li = 0 is an optimal solution in (6) for each

i∈L∪E , conditional on d∗L = 1 and d∗e = 1 for each e∈ E , which in turn implies that these deforestation

decisions are optimal in (8)-(7) respectively, which proves that this deforestation equilibrium is in

Q({L},R).

Assume now that η ≥ η1(π) and |πL| ≥ 2. Let S1, and S2 be two coalitions in πL. Consider a

deforestation equilibrium, where d∗S = 1, d∗e = 1, and B∗Si = 0, for every S ∈ π, i∈L∪E , and e∈ E . In

this case, κR(πL,d
∗,B∗) = no, and there is no profitable deviation of any one coalition that can change

this: for instance, coalition S1 would not change its second stage blocking decision because η≥ η1(πL)

implies that it would not be strictly profitable to block all other individuals in L\S1 ∪E , and the

compliance indicator would not change even if dS1 = 0 because there are at least two coalitions, and

d∗S2 = 1. Therefore, this deforestation equilibrium must be in Q(πL,R). �

Proof of Lemma 1. By Lemma EC.1, we know that Q(πL,C) 6= ∅ for C∈ {N,R} and any partition

πL ∈ ΠL. Hence, we must only prove that any equilibrium in Q(πL,C) is either a deforestation

equilibrium or a no-deforestation equilibrium.

If |πL|= 1, then the result is immediate by the definition of the game, as the single coalition in πL

can only choose d∗L = 1 or d∗L = 0, corresponding to a deforestation equilibrium and no-deforestation

equilibrium respectively. Thus, we consider below only the case with |πL| ≥ 2.

We first show the result for the Area No-Deforestation condition N. Assume by contradiction

that there exists an equilibrium such that d∗S1 = 1 and d∗S2 = 0, for S1 6= S2, and both S1, S2 ∈ πL. By

definition, κN(πL,d
∗,B∗) = no, as there is at least one coalition that engages in deforestation (and

blocking decisions do not matter with N). But without rewards, it is always optimal to engage in

deforestation by (2), so it is a profitable deviation for S2 to set d∗S2 = 1. Therefore, no equilibrium

can exist in Q(πL) with d∗S1 = 0 and d∗S2 = 1.

We now show the result for the Area Regeneration condition R. Assume by contradiction that

there exists an equilibrium such that d∗S1 = 1 and d∗S2 = 0, for S1 6= S2, and both S1, S2 ∈ πL. Consider

then the second stage blocking decisions; there are two possible scenarios, either all locals in S1 that

engage in deforestation are blocked in the second stage (i.e., max
H 6=S1

BH` = 1, for every ` ∈ S2), or at

least one local in S2 is not blocked (i.e., max
H 6=S1

BH` = 0, for some `∈ S2). In the former case, coalition

S2 has a profitable deviation by changing d∗S2 = 0 and not incurring the deforestation costs
∑
`∈S2

c`. In

the latter case, κR(πL,d
∗,B∗) = no, as at least one local from S2 is engaging in deforestation and

not being blocked by any other coalition. Hence, S1 has a profitable deviation by either changing

BS2f = 1 for the unblocked local `∈ S2 (depending on the magnitude of the blocking cost η) or setting

d∗S1 = 1. In all cases, there is a profitable deviation, and therefore every equilibrium must either be
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a deforestation equilibrium or a no-deforestation equilibrium. Note we do not use assumption 3 to

prove these results, and therefore they hold even if L= G. �

Proof of Lemma 2. We begin by showing the results under the Area No-Deforestation condition

N. We have shown in Lemma 1 that T (πL) can take only values {0}, {1}, or {0,1}, so we only need

to prove that a) T (πL) = {0} if and only if πL = {L}, ∆L > 0, and E = ∅, and b) T (πL) = {1} if and

only if ∆S < 0 for some S ∈ πL or E 6= ∅.

Lemma EC.1 implies that T (πL) = {0} (i.e., only no-deforestation equilibria) can occur only if

πL = {L}, ∆L > 0, and E = ∅. Conversely, if πL = {L}, ∆L > 0, and E = ∅, then d∗L = 0 is the unique

solution to (8) by definition of ∆L, which implies that T (πL) = {0}.

If ∆S < 0 for some S ∈ πL or E 6= ∅, then d∗S = 1 or d∗e = 1 (for all e ∈ E) for any equilibrium in

Q(πL,N), as these are the only solution to (8) and (7), respectively. But then, Lemma 1 implies

T (πL) = {1}. Conversely, if ∆S ≥ 0 for all S ∈ πL and E = ∅, then any no-deforestation equilibrium

will be in Q(πL,N), because when κN(πL,d
∗) = yes, then d∗S = 0 is the only solution to (8), which

implies that no coalition would want to deviate from a no-deforestation equilibrium if they all prefer

not to deforest. Therefore, T (πL) = {1} if and only if ∆S < 0 for some S ∈ πL or E 6= ∅.

Under the Area Regeneration condition R, we showed in Lemma EC.1 that if η < η1(πL) = sup{η :

∃S ∈ π with ∆S > η |L \S ∪E|}, then 0∈ T (πL); and if η≥ η1(πL), then 1∈ T (πL). Because

η1(πL)≤ η2(πL) := inf

{
η :

∑
S∈π:∆S>0

⌊
∆S

η

⌋
<max

{
max

H∈π:∆H<0
|H| ,1E6=∅

}}
,

we need only to show that η < η1(πL) implies 1 /∈ T (πL) and that η > η2(πL) implies 0 /∈ T (πL).

To see that η < η1(πL) implies 1 /∈ T (πL), assume by contradiction that 1∈ T (πL). If η < η1(πL),

there exists a coalition S ∈ πL, such that ∆S > η|L\S∪E|. Thus, given any deforestation equilibrium,

S will have a profitable deviation of setting dS = 0, and BSi = 1, for every i ∈ L \ S ∪ E , blocking

all locals outside of S that deforest and all entrants in E . This implies that there cannot be a

deforestation equilibrium in Q(πL,R).

To see that η > η2(πL) implies 0 /∈ T (πL), assume by contradiction that 0 ∈ T (πL). As η is

finite, it follows from the definition of η2(πL) that either (i) there exists some coalition H ∈ πL
with ∆H < 0 or (ii) ∆H ≥ 0 for all H ∈ πL but E 6= 0 and η > maxH∈π ∆H . In case (i), consider

H ∈ arg maxS′∈πL:∆S′<0 |S|. In any no-deforestation equilibrium, H could deviate by setting dH = 1

and because η > η2(πL), the locals in H cannot be blocked by the coalitions S ∈ πL with ∆S ≥ 0.

In case (ii), η is so high that no single entrant can be blocked by any coalition H ∈ πL. Thus, any

entrant e∈ E could profit by deviating and setting de = 1. It follows in both cases that there cannot

be a no-deforestation equilibrium in Q(πL,R) if η > η2(πL). Note we do not use assumption 3 to

prove these results, and therefore they hold even if L= G. �
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To prove our subsequent results, we define the following set:

A(R;πL\R) =


⋃(

πR,(d
∗,B∗),{a`}`∈R

)
∈C(R;πL\R)

T (πR ∪πL\R) if C(R;πL\R) 6= ∅

T (πR ∪πL\R) otherwise.

(EC.1)

To understand the construction, consider the definition of the core and specifically (EC.1). The

set in (EC.1) contains all the deforestation decisions d∗ ∈ {0,1} that could be encountered in the

residual game played by locals in R when all the other locals form a partition πL\R, specifically, all the

Deforestation Outcomes encountered in core outcomes of that residual game if the core is nonempty,

or all Deforestation Outcomes arising in equilibria of any non-cooperative games between locals in R

(and the other locals organized as πL\R) if that core is empty. The notation A(·) highlights that this

set contains all the plausible Assumptions that a deviating coalition S ∈ πL\R should make regarding

outcomes in the residual game played by R. Because the deforestation decisions d∗ ∈ {0,1} suffices

for purposes of calculating the welfare of any coalition S, per (12), the set A(R;πL\R) provides a

very concise summary of the information needed when determining whether a deviation is profitable

or not (and whether an outcome is dominated).

Proof of Theorem 1. First consider the case where ∆L > 0 and E = ∅. Under the Area No-

Deforestation condition N, no outcome that violates (16a) could be in the core because it would have

at least one local ` with a` <J`(1,no)− c` for whom the outcome is dominated by local ` who forms

the singleton coalition {`}. In the case ∆` < 0, Lemma 2 implies that for every partition πL\f of the

residual locals L\ f , T ({{`}}∪πL\f ) = {1} which yields strictly greater welfare J`(1,no)− c` >a` for

the local `. In the case that ∆` ≥ 0 by forming the singleton coalition {`}, local ` will gain strictly

greater welfare regardless of whether or not deforestation occurs because

J`(0,yes)≥ J`(1,no)− c` >a`.

If ∆L > 0 and E = ∅ no outcome with deforestation d∗ = 1 could be in the core because it would be

dominated by locals `∈L who form the grand coalition {L} and maximize their aggregate welfare

without deforestation d∗ = 0, as {0}= T ({L}) by Lemma 2. This implies that when ∆L > 0 and

E = ∅, the core may only contain Compensation Outcomes.

To see that the core contains all Compensation Outcomes, we show that any outcome with partition

πL, d∗ = 0, and allocations a` >J`(1,no)− c`, for all `∈L, such that 0∈ T (πL), must be in the core.

For this, we show that no set S ⊆L would deviate from such an outcome. The whole set S =L would

not deviate, as ∆L > 0 implies that
∑

`∈L a` =w(L,0)>w(L,1). Moreover, no subset S ⊂L would

deviate and form partition πS ∈ΠS, as Lemma 2 implies that 1 ∈ T (πS ∪ πL\S), for any partition
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πL\S, which in turn implies that 1 ∈ A(L \ S;πS). But then under pessimism, any (sub)coalition

Si ∈ πS would not prefer to deforest:∑
`∈Si

a` ≥
∑
`∈Si

(J`(1,no)− c`) =w(Si,1).

This proves that there would be no deviation from the Compensation Outcome we considered, and

therefore the core contains all Compensation Outcomes and only Compensation Outcomes.

Finally, we consider the case of ∆L < 0 or E 6= ∅. Lemma 2 implies that if ∆L < 0 then T (πL) = {1}
for every partition πL of L. Therefore, the core is the set of outcomes (πL,d

∗,{a`}`∈L) with d∗ = 1,

any feasible partition πL ∈ΠL, and allocation a` = J`(1,no)− c`, for all `∈L. Any outcome with a

different allocation must have a` <J`(1,no)− c` for at least one local ` and would be dominated by

the local forming the singleton coalition {`}, by which local ` would have guaranteed the welfare of

J`(1,no)− c`. We conclude that the core is exactly the set of Deforestation Outcomes. �

We now prove Theorem 2. For this, we divided the proof into a series of lemmas stated and proven

below the Theorem.

Proof of Theorem 2. We prove each statement in the theorem by combining the above-mentioned

lemmas.

(a) If η ≤ ηTU
1 , because ηTU

1 ≤ ηTU
3 , and ∆L > 0, Lemma EC.3 and Lemma EC.4 imply that there

are only No-Deforestation Outcomes in the core. Additionally, Lemma EC.8 and Lemma EC.9

imply that the core contains all Blocking-Threat Outcomes.

(b) If ηTU
1 < η < ηTU

2 , as in the previous case, Lemma EC.3 and Lemma EC.4 imply that there are

only No-Deforestation Outcomes in the core. Lemma EC.9, on the other hand, implies that

there can only be Blocking-Threat Outcomes in the core, while Lemma EC.8 and Lemma EC.19

combined show that the core may be empty if η > min
S⊆L:∆S<0

∆L\S
|S| .

(c) If E = ∅ and ηTU
2 < η < ηTU

3 , Lemma EC.11 and Lemma EC.17 imply the core cannot contain

any Blocking-Threat or Compensation Outcomes, while Lemma EC.13 shows that the core may

contain Partial Compensation Outcomes. Additionally, Lemma EC.3 implies that the core can

only contain No-Deforestation Outcomes, which implies that the core can only contain Partial

Compensation Outcomes. Finally, Lemma EC.20 shows that the core could be empty.

(d) If E = ∅ and ηTU
3 < η≤∆G, Lemma EC.15 implies the core contains all Compensation Outcomes,

Lemma EC.12 implies the core may contain Partial Compensation Outcomes, and Lemma EC.11

implies the core cannot contain Blocking-Threat Outcomes. Finally, Lemma EC.3 shows the

core can only contain No-Deforestation Outcomes.

(e) If E = ∅ and η >∆G, Lemma EC.3 implies the core may contain only No-Deforestation Outcomes,

while Lemma EC.16 implies all No-Deforestation Outcomes must be Compensation Outcomes.

Finally, Lemma EC.15 implies the core contains all Compensation Outcomes.
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(f) If E 6= ∅ and ηTU
2 < η < ηTU

3 , Lemma EC.17 implies the core cannot contain any Compensation

Outcomes. Lemma EC.13 implies the core may contain Partial Compensation Outcomes, while

Lemmas EC.9 and EC.10 imply that if η satisfies as well η <
∆G
|L\G| , then the core may contain

Blocking-Threat Outcomes. Moreover, Lemma EC.4 implies that the core can only contain

No-Deforestation Outcomes. Finally, Lemma EC.21 shows that the core may be empty.

(g) If E 6= ∅ and ηTU
3 < η < ηTU

4 , then η < ∆L
|E| ≤∆L, which, by Lemma EC.15 implies that the core

must contain all Compensation Outcomes. Moreover, Lemma EC.12 shows the core may contain

Partial Compensation Outcomes, and Lemmas EC.9 and EC.10 imply that if η <
∆G
|L\G| it may

contain Blocking-Threat Outcomes. Finally, Lemma EC.4 shows that the core can only contain

No-Deforestation Outcomes.

(h) If E 6= ∅ and ηTU
4 < η <∆G, Lemma EC.6 implies the core contains Deforestation Outcomes.

Lemmas EC.12 and Lemma EC.18 imply that if η <∆L it may contain Compensation Outcomes,

and Lemmas EC.9 and EC.10 imply the core may contain Blocking-Threat Outcomes as long as

η <
∆G
|L\G|). Finally, Lemma EC.14 implies the core may contain Partial Compensation Outcomes.

(i) If E 6= ∅ and η >∆G, Lemmas EC.16 and EC.18 imply the core does not contain No-Deforestation

Outcomes, while Lemma EC.6 implies the core always contains Deforestation Outcomes, which

implies that the core contains only Deforestation Outcomes.

If ∆L < 0, then the core may only contain Deforestation Outcomes. To see this, notice that

∆L < 0 implies that η > η2({L}), for any η > 0, where η2(·) is defined in (9b), which, by Lemma 2

implies that T ({L}) = {1}. Moreover, ∆L < 0 implies that the grand coalition prefers deforestation

(w(L;1)>w(L;0)). These two observations combined show that any No-Deforestation Outcomes

(d∗ = 0) would be dominated by the grand coalition {L} deviating towards deforestation, which

implies that the core may only contain Deforestation Outcomes (d∗ = 1). Finally, Lemma EC.22

implies that the core may be empty when ∆L < 0, which completes the proof of the theorem. �

Lemma EC.2. Consider the cooperative game with transferable utility defined in §3.3. Every

outcome in the core with allocation {a`}`∈L must satisfy:

ag ≥ Jg(1,no)− cg for all g ∈ G (EC.2a)

a` ≥ J`(0,yes) for all `∈L\G. (EC.2b)

Proof of Lemma EC.2. We show the following generalization of both requirements (EC.2a) and

(EC.2b):

a` ≥min{J`(0,yes), J`(1,no)− c`} for all `∈L,

for every outcome in the core with allocation {a`}`∈L.
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Assume by contradiction that there is an outcome in the core with a local ` ∈ L, that receives

allocation a` <min{J`(0,yes), J`(1,no)− c`}. Then, local ` can deviate and form a coalition {`}. And,

by our assumption, a` <w({`},d∗), for every d∗ ∈ {0,1}, so the outcome is dominated and cannot

be in the core. �

Lemma EC.3. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and E = ∅, then the core contains only No-Deforestation

Outcomes.

Proof of Lemma EC.3. Assume by contradiction that the core contains a Deforestation Outcome

(d∗ = 1). But then, the trivial deviation of L forming the grand coalition dominates this outcome:∑
`∈L

a` =
∑
`∈L

J(1,N)<w(L,0) =
∑
`∈L

J(0, Y ). (EC.3)

Where the inequality is due to ∆L > 0. Finally, because ∆L > 0 and E = ∅, η1({L}) =∞, and by

Lemma 2, T ({L}) = {0}, for any η, proving that the deviation is profitable for all equilibria. And

therefore, the core cannot contain Deforestation Outcomes. �

Lemma EC.4. Consider the Area Regeneration condition R in the cooperative game with transfer-

able utility defined in §3.3. If ∆L > 0, E 6= ∅, and η < ηTU
4 := maxS⊆L

∆S
|L\S∪E| , the core contains only

No-Deforestation Outcomes. Note that this result does not require Assumption 3.

Proof of Lemma EC.4. We show that every Deforestation Outcome (d∗ = 1) is dominated. The

assumption on the value of η implies that there exists a coalition S ⊆L such that

∆S > η|L \S ∪E| ≥ 0, (EC.4)

where the second inequality follows because ∆L > 0. Moreover, because including in S the locals in

G \S only expands ∆S and reduces |L \S ∪E| in (EC.4), we consider a S that also satisfies G ⊆ S.

Consider then any Deforestation Outcome (d∗ = 1). We show that the coalition S satisfying

(EC.4) and G ⊆ S could profitably deviate towards a No-Deforestation Outcome. Because G ⊆ S,

Lemma EC.2 implies that
∑

`∈L\S a` ≥
∑

`∈L\S J`(0,yes). Moreover, ∆L > 0 and the outcome being a

Deforestation Outcome imply that:∑
`∈S

a` +
∑
`∈L\S

a` =
∑
`∈L

(
J`(1,no)− c`

)
<
∑
`∈L

J`(0,yes) =
∑
`∈S

J`(0,yes) +
∑
`∈L\S

J`(0,yes).

Therefore,
∑

`∈S a` <
∑

`∈S J`(0,yes). But then, consider any partition of L\S, πL\S ∈ΠL\S. Condition

(EC.4) implies that η < η1(πL\S ∪{S}), which by Lemma 2 (which does not require Assumption 3)

implies that {0}= T (πL\S ∪{S}). Because this holds for every partition of the remaining locals L\S,
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then {0}=A(L\S;{S}), as defined in (EC.1). Finally, this implies that
∑

`∈S a` <w(S;d∗) for every

d∗ ∈A(L\S;{S}), proving that the Deforestation Outcome is dominated by coalition S deviating

and guaranteeing higher welfare with a No-Deforestation Outcome. �

Lemma EC.5. If the core C(L;∅) contains a No-Deforestation Outcome (d∗ = 0), with allocations

{a`}`∈L, then it must contain all No-Deforestation Outcomes with the same allocation.

Proof of Lemma EC.5. Notice that we need only prove that if the core contains a No-Deforestation

Outcome with a given allocation, it must contain any other No-Deforestation Outcome with the

same allocation for every feasible partition.

To see this, assume that we have an outcome with partition πL, d∗ = 0, and allocation {a`}`∈L.

Consider then any partition σL that satisfies:∑
`∈S

a` =w(S,0), for every S ∈ σL. (EC.5)

We show that the outcome with partition σL, d∗ = 0 and allocation {a`}`∈L is in the core. To see

this, assume by contradiction that a set S ⊆L could deviate and form partition π̂S ∈ΠS. This means

that for each Si ∈ π̂S, ∑
`∈Si

a` <w(Si,d
∗), for every d∗ ∈A(L\S; π̂S).

But then, this same set S with partition π̂S constitutes a deviation from the original outcome with

partition πL, which contradicts the premise that the outcome is in the core. �

Lemma EC.6. Consider the Area Regeneration condition R in the cooperative game with transfer-

able utility defined in §3.3. If ∆L > 0, E 6= ∅, and η≥maxS⊆L
∆S

|L\S∪E| , then the core always contains

Deforestation Outcomes. Note that this result does not require Assumption 3.

Proof of Lemma EC.6. Consider any Deforestation Outcome, with a` = J`(1,no)− c`, for all `∈L,

and d∗ = 1. We will show that this outcome must be in the core. Assume by contradiction that a

subset H ⊆L can profitably deviate and form partition πH .

First, we analyze the case where H =L. In this case,

η1({{L}}) :=
∆L
|E|
≤max

S⊆L

∆S

|L \S ∪E|
≤ η.

Hence, by Lemma 2 (which does not require Assumption 3, 1∈ T (πH) =A(∅, πH), so H =L would

not strictly benefit by deviating.

If H ⊂L, then Lemma EC.7 (that does not require Assumption 3) implies that 1∈A(L\H,πH).

So any coalition S ∈ πH must satisfy∑
`∈S

a` < min
d∗∈A(L\H,πH )

w(S;d∗)≤w(S;1) :=
∑
`∈S

(
J`(1,no)− c`

)
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where the strict inequality comes from πH being a profitable deviation and the second inequality

follows from 1∈A(L\H,πH). This provides the contradiction and completes the proof. �

Lemma EC.7. Consider the Area Regeneration condition R in the cooperative game with transfer-

able utility defined in §3.3. If ∆L > 0 and η ≥ ηTU
3 := maxS⊂L

∆S
|L\S∪E| , then for every residual game

with |R| ≤ |L|− 1 and any partition πL\R of the remaining locals, we have 1∈A(R;πL\R). Note that

this result does not require Assumption 3.

Proof of Lemma EC.7. We proceed by induction in the size of the residual set |R|= k. We first

prove the base case k= 1: that the core for a residual game with one local R= {h} for h∈L and any

partition πL\{h} ∈ΠL\{h} of the other locals contains a Deforestation Outcome.

We claim that in this case, our standing assumption on η implies that η≥ η1({{h}, πL\{h}}), for

any partition πL\{h}. This follows directly from the definition of η1(·) in (9a), because we have:

∀π ∈ΠL \ {L}, η≥max
S⊂L

∆S

|L \S ∪E|
≥ sup

{
η : ∃S ∈ π : ∆S > η|L \S ∪E|

}
:= η1(π). (EC.6)

Therefore, according to Lemma 2 (which does not require Assumption 3), 1 ∈ T ({{h}, πL\{h}}),

so the core of the residual game C({h};πL\{h}) contains the Deforestation Outcome

(πh = {{h}},d∗ = 1, ah = Jh(1,no)− ch) .

Having just established our claim for k= 1, assume by induction that for an integer k ∈ [1, |L|− 2],

every residual game with |R| ≤ k locals has

1∈A(R;πL\R). (EC.7)

We prove the inductive assumption for a residual game with |R|= k+ 1. Our assumption k≤ |L|− 2

implies that L\R is nonempty, so by (EC.6) we have again that η≥ η1({πR, πL\R}}) for any partitions

πR and πL\R, and therefore according to Lemma 2, 1∈ T ({πR, πL\R}). Hence,

πR = {R}, d∗ = 1, a` = J`(1,no)− c`, ∀ `∈R (EC.8)

is an outcome of the residual game. That outcome is un-dominated under pessimism because for any

coalition S ⊂R, partition πS ∈ΠS and (sub)coalition Si ∈ πS,

min
d∗∈A(R\S;πS∪πL\R)

w(Si;d
∗)≤w(Si;1) =

∑
`∈Si

J`(1,no)− c` =
∑
`∈Si

a` (EC.9)

wherein the inequality follows from the inductive assumption (because the residual set R \ S has

size at most k− 1), the first equality from (12), and the second equality from (EC.8). Hence the

outcome (EC.8) is in the core for the residual game, which completes our inductive proof. �



e-companion to Xavier Warnes, Joann de Zegher, Dan Iancu, Erica Plambeck: Engaging Locals to Protect Forests ec11

Lemma EC.8. Consider the Area Regeneration condition R in the cooperative game with transfer-

able utility defined in §3.3. If ∆L > 0 and η < min
S⊆L:∆S<0

∆L\S
|S| , then the core contains every Blocking-

Threat Outcome.

Proof of Lemma EC.8. We first claim that

η < min
S⊆L:∆S<0

∆L\S
|S|

(EC.10)

implies that for any residual game for a set of locals R⊆L, R 6= ∅, and any feasible partition πL\R of

the other locals that satisfies

∆S < 0 for every S ∈ πL\R, (EC.11)

the core contains the outcomes:

πR = {G ∩R,{`}`∈R\G} (EC.12a)

d∗ = 0 (EC.12b)

a` = J`(0,yes) for all `∈R. (EC.12c)

We prove the claim by induction on the number of residual locals, |R|. To verify the inductive

assumption for |R|= 1, consider a residual game with one local R= {h} and a partition of the other

locals πL\R that satisfies (EC.11). This implies that ∆L\{h} =
∑

S∈πL\R
∆S < 0. Because ∆L > 0, this

implies that h∈ G, and therefore (EC.10) implies:

η <
∆R

|L \R|
≤∆R ·

[
max

(
1, max
S∈πL\R:∆S<0

|S|
)]−1

:= η2({R}∪πL\R).

Therefore, by Lemma 2, 0 ∈ T ({h} ∪ πL\{h}), which implies that the core contains the outcome(
{h},0, ah = Jh(0,yes)

)
, which is (EC.12a)-(EC.12c) for this residual game with R= {h}.

To complete the inductive proof, assume that the claim holds for any residual game with |R| ≤ k

for some integer k ∈ [1, |L|− 1], and consider a residual game with |R|= k+ 1 residual locals and a

feasible partition of the other locals πL\R for which (EC.11) holds. The outcome (EC.12a)-(EC.12c)

is a valid outcome of the residual game because (EC.10) and (EC.11) imply that R∩G is nonempty

and

η <
∆R∩G

|L \ (R∩G)|
≤∆R∩G ·

[
max

(
1, max
S∈πL\R:∆S<0

|S|
)]−1

:= η2({{R∩G},{`}`∈R\G}∪πL\R),

where the first inequality comes from ∆L\(R∩G) =
∑

S∈πL\R
∆S +

∑
`∈R\G∆` < 0 combined with

(EC.10) and the second one follows from the definition of η2(·) in (9b). Lemma 2 then implies that

0∈ T ({{R/G},{`}`∈R\G}∪πL\R), so the outcome (EC.12a)-(EC.12c) is valid. To see that this outcome

is undominated, consider a group of locals S ⊆R that forms partition πS ∈ΠS. We distinguish two
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mutually exclusive and exhaustive cases. In Case 1, there exists a (sub)coalition Si ∈ πS such that

∆Si ≥ 0. For this (sub)coalition, (12) implies that

w(Si;d
∗)≤

∑
`∈Si

J`(0,yes) =
∑
`∈Si

a`, for all d∗ ∈ {0,1}.

Therefore, our initial outcome with allocation (EC.12c) cannot be dominated by coalition S ⊆R

forming partition πS ∈ΠS that satisfies ∆Si ≥ 0 for some Si ∈ πS. In Case 2, there is no (sub)coalition

Si ∈ πS with ∆Si ≥ 0, which with (EC.11) implies that:

∆S < 0, for every coalition S ∈ πL\R ∪πS. (EC.13)

Therefore, ∆L > 0 and (EC.13) imply ∆R\S > 0, while S 6= ∅ and |R|= k+ 1 imply that |R \S| ≤ k,

so our inductive assumption applies to the residual game played by locals R \S when the other locals

form a partition πL\R ∪πS. This implies that 0∈A(R\S;πL\R ∪πS) and thus:

min
d∗∈A(R\S;πL\R∪πS)

w(Si;d
∗)≤w(Si;0) =

∑
`∈Si

J`(0,yes) =
∑
`∈Si

a`, for every (sub)coalition Si ∈ πS.

Therefore, an outcome with allocation (EC.12c) is not dominated by coalition S ⊆R forming partition

πS ∈ΠS under pessimism in Case 2, which completes the inductive proof of our claim.

As the special case of the claim for the residual game with R= L, we have established that if

(EC.10) holds, then the core contains the outcome with π =
{
{G},{`}`∈L\G

}
, d∗ = 0 and a`=J`(0,yes)

for `∈L. Moreover, by Lemma EC.5, because the core contains one Blocking-Threat Outcome, every

Blocking-Threat Outcome must be in the core, which concludes the proof. �

Lemma EC.9. Consider the Area Regeneration condition R in the cooperative game with transfer-

able utility defined in §3.3. If ∆L > 0 and η < ηTU
2 :=

∆G
|L\G∪E| , then any outcome in the core must be a

Blocking-Threat Outcome.

Proof of Lemma EC.9. We prove that any core outcome has d∗ = 0 and a` = J`(0,yes) for `∈L\G,

by showing that any outcome that does not satisfy those conditions must be dominated. Any outcome

with a` <J`(0,yes) for some `∈L\G cannot be in the core by Lemma EC.2. Thus, the allocations

to locals in L\G must satisfy ∑
`∈L\G

a` ≥
∑
`∈L\G

J`(0,yes). (EC.14)

To derive a contradiction, assume there exists `∈L\G with a` >J`(0,yes), which implies:∑
g∈G

ag ≤max

{∑
i∈L

(
Ji(1,no)− ci

)
,
∑
i∈L

Ji(0,yes)

}
−
∑
`∈L\G

a`

≤
∑
i∈L

Ji(0,yes)−
∑
`∈L\G

a`
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=
∑
g∈G

Jg(0,yes) +
∑
`∈L\G

J`(0,yes)−
∑
`∈L\G

a`

<
∑
g∈G

Jg(0,yes), (EC.15)

where the first inequality follows by (12) (because any outcome either has d∗ = 0 or d∗ = 1), the

second inequality follows because ∆L > 0, and the last inequality is implied by our assumption. We

claim that an outcome satisfying (EC.15) cannot be in the core because it is dominated by the locals

in G forming a coalition that can prevent deforestation and can achieve an aggregate welfare of∑
g∈G Jg(0,yes). To see that the latter is a valid outcome, consider any partition πL\G of the other

locals and note that our standing assumption η < ηTU
2 implies:

η1({G}∪πL\G)>
∆G

|L \ G ∪E|
= ηTU

2 > η, (EC.16)

where the first inequality follows directly from the definition of η1(π) in (9a). Thus, Lemma 2 and

(EC.16) imply that T ({G} ∪ πL\G) = {0}, so any outcome involving the coalition G must satisfy

d∗ = 0 and a welfare of w(G;0) =
∑

g∈G Jg(0,yes) for coalition G, which completes the contradiction.

Therefore, every residual core outcome under the premises of the Lemma must involve d∗ = 0 and

a` = J`(0,yes) for every `∈L\G, proving the result. �

Lemma EC.10. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η ∈
(

min
S⊆L:∆S<0

∆L\S
|S| ,

∆G
|L\G|

)
, then the core may contain

Blocking-Threat Outcomes.

Proof of Lemma EC.10. To prove the Lemma, we consider first the following instance with |E| 6= ∅

and L= {`, g,h} satisfying:

∆g >∆` > 0, ∆h < 0, ∆` + ∆h < 0, ∆g + ∆h > 0, ∆L > 0, (EC.17)

and min
S⊆L:∆S<0

∆L\S
|S| =

∆g
2
< η <

∆G
|L\G| = ∆g + ∆`. We show that the Blocking-Threat Outcome with

no-deforestation (d∗ = 0), locals forming the coalition πL = {{`, g},{h}}, and allocations

a` = J`(0,yes)−∆h, ag = Jg(0,yes) + ∆h, ah = Jh(0,yes), (EC.18)

is in the core. First, notice that the outcome is a Blocking-Threat Outcome, as h is allocated Jh(0,yes).

We will consider all possible deviations to show that it is in the core.

Local g would not deviate and form partition {g}, because η >
∆g
2

and ∆` + ∆h < 0 imply that

{`,h} could deforest and not be blocked. In particular, because η2({{g},{`,h}}) =
∆g
2

, then η >
∆g
2

implies by Lemma 2 that T ({{g},{`,h}}) = {1}, which in turn implies that 1 ∈ A({`,h};{{g}}).

Finally, because ∆g + ∆h > 0 by (EC.17), ag = Jg(0,yes) + ∆h > Jg(1,no)− cg = w({g};1), which

implies that under pessimism, g would not deviate.
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Local ` would not deviate and form partition {`} because

a` >J`(0,yes)>J`(1,no)− c` ≥ min
d∗∈{0,1}

w({`};d∗),

where the first inequality is due to ∆h < 0 and the second due to ∆` > 0.

Local h would not deviate as a singleton {h} because η <∆` + ∆g implies η < η2({{`, g},{h}}), so

Lemma 2 implies 0∈ T ({{`, g},{h}})⊆A({`, g};{{h}} and thus ah ≥mind∗∈{0,1}w({h};d∗).

Locals g and ` together are already receiving their maximum allocation w({`, g};0), as ∆`+∆g > 0,

and therefore would not deviate and form a coalition {`, g}. For the same reason, locals g and h

would not deviate, as ∆g + ∆h > 0.

Locals ` and h would not deviate because,

a` + ah = J`(0,yes)−∆h +Jh(0,yes) = J`(0,yes) +Jh(1,no)− ch,

and hence, ∆h < 0 implies that a` + ah >J`(0,yes) +Jh(0,yes), while ∆` > 0 implies that

a` + ah >J`(1,no)− c` +Jh(1,no)− ch.

This proves that a` + ag >w({`, g};d∗), for every d∗ ∈ {0,1}, and therefore {`,h} would not deviate

together.

Finally, the grand coalition {`, g,h} would not deviate because ∆L > 0 implies

a` + ag + ah =w(L;0)>w(L;1).

We have shown then that this instance contains a Blocking-Threat Outcome in the core. Notice

that we did not use the fact that there are entrants (E 6= ∅). This is because η <∆` + ∆g implies that

the coalition {`, g} can block either h or any individual entry, which leads to η < η2({{`, g},{h}}),

regardless of how many entrants there are in E . Therefore, the same example works with E = ∅ or

with an arbitrary number of entrants. �

Lemma EC.11. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η >
∆G
|L\G| , then the core contains no Blocking-Threat

Outcomes.

Proof of Lemma EC.11. Assume by contradiction that the core contains a Blocking-Threat

outcome, i.e., d∗ = 0 and allocation a` that satisfies a` = J`(0, Y ) for every `∈L\G. We claim that

this outcome is dominated by the locals in L \ G forming a coalition and deriving strictly larger

welfare. In that case, because η >
∆G
|L\G| , any partition πG of the locals in G would satisfy

η2(πG ∪{L\G})≤
∆G
|L \ G|

< η,
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which follows from the definition of η2(·) in (9b). Lemma 2 would imply that T (πG ∪{L\G}) = {1},

so any outcome involving the coalition {L \G} would have d∗ = 1 and a welfare for that coalition of

w(L\G, πG ∪{L\G},1) =
∑
`∈L\G

(
J`(1,N)− c`

)
>
∑
`∈L\G

J`(0, Y ) =
∑
`∈L\G

a`,

providing that the Blocking-Threat outcome would be dominated. �

Lemma EC.12. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η ∈
(
ηTU

3 := maxS⊂L
∆S

|L\S∪E| , ∆G ·1E=∅+ ∆L ·1E6=∅
)
, the

core may contain Partial Compensation Outcomes.

Proof of Lemma EC.12. Consider an example with L= {`, g,h} so that:

∆g > 0, ∆` < 0, ∆h < 0, ∆L > 0. (EC.19)

We will show that the core C(L;∅) contains outcomes with πL = {{L}}, d∗ = 0, and allocation {ai}i∈L
satisfying:

ah = Jh(1,no)− ch + ε (EC.20a)

ag = Jg(0,yes)− (J`(0,yes)− a`)− (Jh(0,yes)− ah) + ε≥ Jg(1,no)− cg + ε (EC.20b)

a` = J`(1,no)− c`− ε (EC.20c)

a` ≥ J`(0,yes). (EC.20d)

for some ε > 0. Note first that an outcome satisfying (EC.20a)-(EC.20d) is feasible due to (EC.19).

We prove that it belongs to the core by checking that it is not dominated, i.e., no subset S ⊆L could

profitably deviate.

First, consider the case with E = ∅. The conditions in the Lemma imply that η satisfies:

max
S⊂L

∆S

|L \S ∪E|
< η <∆G = ∆g. (EC.21)

The locals in {h, `} would not deviate together, as

ah + a` ≥ Jh(1,no)− ch +J`(1,no)− c` ≥w({h, f},d∗),

for d∗ ∈ {0,1}. Here, the first inequality comes from (EC.20a) and (EC.20c), and the second from

`, g ∈L\G.

Neither h nor ` could profitably deviate as singletons. Local h would not deviate due to (EC.20a).

To verify this for `, we show that there is a No-Deforestation Outcome in C({h, g};{`}), which by

(EC.20d) implies that ` would not deviate under pessimism. To that end, we claim that the residual

outcome π{h,g} = {{h},{g}}, d∗ = 0, and ai = Ji(0,yes), for i∈L is an outcome of the residual game
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played by {g,h} when ` deviates. η <∆G implies that η < η3

(
{{h},{g},{`}}

)
, and therefore Lemma 2

implies that 0∈ T ({{h},{g},{`}}). Thus 0∈A({h};{g},{`}), so g could not profitably deviate from

the residual outcome under pessimism, which in turn proves that ` would not deviate under pessimism

from the outcome (EC.20a)-(EC.20d).

Lastly, to see that local g would not unilaterally deviate or form a coalition with ` or h to deviate,

consider any S ⊂L with g ∈ S. Because η >maxS⊂L
∆S

|L\S∪E| implies that η > η1({L \ S,S}) in this

case, Lemma 2 implies that 1∈A(L\S;{S}). But then, because any such S satisfies∑
i∈S

ai ≥
∑
i∈S

(
Ji(1,no)− ci

)
from (EC.20a)-(EC.20c), the coalition S would not strictly benefit from deviating under pessimism.

To conclude the proof, consider the same instance as above but with one entrant, |E|= 1. We claim

that the outcome in (EC.20a)-(EC.20c) is in the core C(L;∅) provided that maxS⊂L
∆S

|L\S∪E| < η <∆L.

The requirement η <∆L is sufficient for {`, g,h} to credibly threaten to block e∈ E from producing

and it also implies that η <∆G holds, so the rest of the proof proceeds exactly as above. �

Lemma EC.13. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η ∈
( ∆G
|L\G∪E| + ε,max

S⊂L
∆S

|L\S∪E|

)
, for any 0< ε <

∆G
(2+|E|)2

then the core may contain Partial Compensation Outcomes.

Proof of Lemma EC.13. Consider an instance with arbitrary E and L= {`, g,h} satisfying:

∆g > 0, ∆` =
−∆g

2
+ ε <∆h =−ε < 0, ∆L > 0. (EC.22)

These conditions imply that
∆g+∆`
1+|E| =

∆g
2+2|E| + ε

1+|E| ≤
∆g

2+|E| + ε <
∆g+∆h
1+|E| = max

S⊂L
∆S

|L\S∪|E|| , so by our

assumptions on η we have:

∆` + ∆g

1 + |E|
≤ ∆g

2 + |E|
+ ε < η <

∆g + ∆h

1 + |E|
. (EC.23)

We prove that the core contains the Partial Compensation Outcome:

πL = {{`},{g,h}}, d∗ = 0, a` = J`(0,yes), ah = Jh(1,no)− ch−∆`,

ag = Jg(0,yes)− (ah−Jh(0,yes)) = Jg(0,yes) + ∆h + ∆`.

Notice that this is a Partial Compensation Outcome because ∆` < 0 implies that ah >Jh(1,no)− ch
and a` <J`(1,no)−c`. Moreover, (EC.23) implies η <

∆g+∆h
1+|E| and thus η < η2({{`},{g,h}}) = ∆g+∆h,

so Lemma 2 implies that 0 ∈ T ({{`},{g,h}}). We show that this outcome belongs to the core by

proving that no deviation is profitable.

Local h would not deviate as a singleton because ah >w({h},d∗), for every d∗ ∈ {0,1}.
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Local ` would not deviate as a singleton because 0∈ T ({{g,h},{`}})⊆A({g,h};{{`}}), and thus

a` = J`(0,yes)≥mind∗∈A({g,h};{{`}})w({`};d∗), so ` would not deviate under pessimism.

To see why g would not deviate as a singleton, note that ` cannot block by himself all other locals

(and potentially any entrants). In particular, (EC.23) implies that η >
∆g

2+|E| = η1({{g},{`,h}}), so

Lemma 2 implies that 1∈ T ({{g},{`,h}})⊆A({`,h};{{g}}); local g’s allocation thus satisfies

ag = Jg(0,yes) + ∆h + ∆`

= Jg(1,no)− cg + ∆L

> min
d∗∈A({`,h};{{g}})

w({g};d∗),

where the last inequality follows because ∆L > 0 and 1∈A({`,h};{{g}}). Therefore, local g would

not deviate under pessimism.

Locals ` and h would not deviate as {`,h} because their current allocation already satisfies:

a` + ah = J`(1,no)− c` + ∆` +Jh(1,no)− ch−∆` ≥w({`,h};d∗), for every d∗ ∈ {0,1},

where the inequality follows because ∆` + ∆h < 0.

To prove that locals ` and g would also not deviate as {`, g}, note that (EC.23) implies that η >

∆`+∆g
1+|E| := η1({{`, g},{h}}), Therefore, Lemma 2 implies that 1∈ T ({{h},{`, g}})⊆A({h};{{`, g}}),

so the allocations for ` and g satisfy:

a` + ag = J`(0,yes) +Jg(0,yes) + ∆h + ∆`

= J`(1,no)− c` +Jg(1,no)− cg + 2∆` + ∆h + ∆g

=
∑
i∈{`,g}

(Ji(1,no)− ci) + ε

≥ min
d∗∈A({h};{{`,g}})

w({`, g};d∗),

where the last inequality follows because ε > 0 and 1∈A({h};{{`, g}}). Therefore, ` and g would not

deviate together.

Finally, the two subsets {g,h} and {`, g,h} would not deviate because for every such subset S we

have
∑

i∈S ai =
∑

i∈S Ji(0,yes) and ∆S > 0, so their current allocations cannot be improved.

This proves that no subset would deviate, so the Partial Compensation Outcome is in the core. �

Lemma EC.14. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0, E 6= ∅, and η ∈
(

max
S⊂L

∆S
|L\S∪E| ,∆G

)
, then the core may contain

Partial Compensation Outcomes.
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Proof of Lemma EC.14. We consider an instance with L = {`, g} and |E| = 1 satisfying the

conditions:

∆g > 0, ∆` < 0, ∆L > 0.

Let η satisfy max
S⊂L

∆S
|L\S∪E| =

∆g
2
< η <∆G = ∆g. We show that the core contains the Partial Compensa-

tion Outcome with πL = {L}, no deforestation (d∗ = 0), and the allocation

a` = J`(0,yes) + ε, ag = Jg(0,yes)− ε,

for 0 < ε < −∆`. Notice first that this is a Partial Compensation Outcome, as ` satisfies both

conditions in (16a). To show that it is in the core, we consider all possible deviations.

We first consider the deviation of local `. Because η < ∆g = η2({{`},{g}}), Lemma 2 implies

0 ∈ T ({{`},{g}}) ⊆ A({g};{{`}}) and therefore a` > w({`};0) ≥ mind∗∈A({g};{{`}})w({`};d∗), so `

would not deviate under pessimism.

Local g would not deviate either. To see this, notice that η >
∆g
2

= η1({{g},{`}}), so Lemma 2

implies that 1 ∈ T ({{g},{`}})⊆A({`};{{g}}). As ag = J(0,yes)− ε and ε <−∆` <∆g, then ag >

w({g},1)≥mind∗∈A({`};{{g}})w({g};d∗) holds, so g would not deviate under pessimism.

Lastly, `, g would not deviate together because ∆L > 0 implies a` + ag ≥ w(L,d∗), for all d∗ ∈

{0,1}. �

Lemma EC.15. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0, η > ηTU
3 := maxS⊂L

∆S
|L\S∪E| and η < 1E6=∅ ·∆L + 1E=∅ · ∞,

then the core contains the set of Compensation Outcomes.

Proof of Lemma EC.15. Consider any Compensation Outcome, which satisfies by definition

a` ≥ J`(1,no)− c`, for all `∈L.

Using Lemma EC.7, we will show that this outcome is in the core. Note that η < η2({L}) =

1E6=∅ ·∆L+ 1E=∅ ·∞, which by Lemma 2 implies that 0∈ T ({L}). We proceed then to show that this

outcome is un-dominated.

First, note that the grand coalition {L} can never profitably deviate from any No-Deforestation

Outcome (and thus also from a Compensation Outcome) when ∆L > 0, because any No-Deforestation

Outcome already provides the largest possible welfare for L, namely
∑

`∈L J`(0,yes).

Now, consider any coalition S ⊂L that forms partition πS ∈ΠS. We show that this configuration

cannot dominate the Compensation Outcome. For any such coalition S, we have |L \S| ∈ [1, |L|− 1],

and by Lemma EC.7, we have 1∈A(L\S;πS). Hence, for any (sub)coalition Si ∈ πS,

min
d∗∈A(L\S;πS)

w(Si;d
∗)≤w(Si;1) =

∑
`∈S

(
J`(1,no)− c`

)
≤
∑
`∈S

a`.
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Therefore, the coalition S with partition πS cannot derive a strictly larger welfare under pessimism,

proving that the Compensation Outcome is un-dominated and must belong to the core. �

Lemma EC.16. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η >∆G, then any No-Deforestation Outcome in the core

must be a Compensation Outcome.

Proof of Lemma EC.16. Assume by contradiction that there is a No-Deforestation Outcome in

the core such that a` <J`(1,no)− c`, for some `∈L\G. Then, ` can deviate towards a deforestation

equilibrium all by himself. This is because, for any partition of the remaining locals πL\{`},

η2(πL\{`} ∪{{`}})≤∆G < η,

which, by Lemma 2, implies that {1}= T (πL\{`} ∪{{`}}) and thus {1}=A(L\ {`};{{`}}) and

w({`};d∗)>a`, for every d∗ ∈A(L\ {`};{{`}}).

This proves that {`} can deviate and improve his allocation, and therefore, every `∈L\G must have

an allocation that satisfies

a` ≥ J`(1,no)− c`. �

Lemma EC.17. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η <max
S⊂L

∆S
|L\S∪E| , then the core contains no Compensation

Outcomes.

Proof of Lemma EC.17. Assume by contradiction that there is a Compensation Outcome in the

core. The allocations {a}`∈L should then satisfy a` ≥ J`(1,no)− c`, for all `∈L\G. We prove that

this outcome is dominated.

First, we observe that because η <max
S⊂L

∆S
|L\S∪E| , then there must exist S ⊂L, such that

∆S > η|L \S ∪E|. (EC.24)

Without loss of generality, we can assume G ⊆ S, and therefore L\S ⊆L\G. We will show that S

can deviate from the Compensation Outcome.

For any partition πL\S ∈ΠL\S, equation (EC.24) implies that η≤ η1({S}∪πL\S), which by Lemma 2

implies that T ({S}∪πL\S) = {0}. Because this holds for every partition πL\S, then A(L\S;{S}) = {0},

where A(·; ·) is defined in (EC.1).

Because the Compensation Outcome is a No-Deforestation Outcome, we know that∑
`∈S

a` +
∑
`∈L\S

a` =w(L;0).
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But then, ∑
`∈S

a` =w(L;0)−
∑
`∈L\S

a`

≤w(L;0)−
∑
`∈L\S

(
J`(1,no)− c`

)
=w(S;0) + ∆L\S

<w(S;0),

where the first inequality comes from the outcome being a Compensation Outcome, and the second

(strict) inequality comes from L\S ⊆L\G, which implies that ∆L\S < 0. But then, we have shown that∑
`∈S a` <w(S;d∗), for every d∗ ∈A(L\S;{S}), which completes the proof that the Compensation

Outcome is dominated. �

Lemma EC.18. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0, E 6= ∅, and η > ∆L, then the core does not contain any

Compensation Outcomes.

Proof of Lemma EC.18. Assume by contradiction that the core contains a Compensation Outcome,

i.e., d∗ = 0 some partition πL and allocations {a`}`∈L with a` ≥ J`(1,no)− c`, for every `∈L\G.

We claim that ∆S ≥ 0, for every S ∈ πL. Otherwise, if some coalition S ∈ πL had ∆S < 0, then the

locals in S ∩G would have to have allocations satisfying:∑
g∈S∩G

ag =
∑
g∈S∩G

Jg(0,yes) +
∑
`∈S\G

J`(0,yes)−
∑
`∈S\G

a`

<
∑
g∈S∩G

(Jg(1,no)− cg) +
∑
`∈S\G

(J`(1,no)− c`)−
∑
`∈S\G

a`

≤
∑
g∈S∩G

(Jg(1,no)− cg),

where the first inequality follows from ∆S < 0 and the second follows from the definition of a

Compensation Outcome. The latter result would contradict Lemma EC.2, proving our claim.

As every coalition S satisfies ∆S ≥ 0 and
∑

S∈πL
∆S = ∆L > 0, then ∆S ≤∆L, for every S ∈ πL.

But then, any entrant could deviate from this No-Deforestation Outcome and not be blocked by

any coalition S; specifically, η >∆L ≥∆S and E 6= ∅ imply η2(πL) = max
S∈πL

∆S < η and thus Lemma 2

implies that {1}= T (πL). This proves that the Compensation Outcome cannot be in the core. �

Lemma EC.19. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0 and η ∈
(

min
S⊆L:∆S<0

∆L\S
|S| ,

∆G
|L\G∪E|

)
, then the core may be

empty.
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Proof of Lemma EC.19. Consider the following example with L= {`, g,h}, E = {e}, and:

∆` = ∆g > 0, ∆h < 0, ∆L > 0, (EC.25a)

∆h + ∆g < 0, ∆h + ∆` < 0. (EC.25b)

Finally, consider η such that:

min
S⊆L,∆S<0

∆L\S
|S|

:=
∆`

2
=

∆g

2
< η <

∆` + ∆g

2
= ∆` = ∆g. (EC.26)

Let us assume by contradiction that there is an outcome in C(L;∅), with allocations {a`, ag, ah}. We

show that these allocations would have to satisfy the following infeasible system of inequalities:

a` + ag + ah = J`(0,yes) +Jg(0,yes) +Jh(0,yes) (EC.27a)

a` + ag ≥ J`(0,yes) +Jg(0,yes) (EC.27b)

ah ≥ Jh(0,yes) (EC.27c)

a` + ah ≥ J`(1,no)− c` +Jh(1,no)− ch (EC.27d)

ag + ah ≥ Jg(1,no)− cg +Jh(1,no)− ch. (EC.27e)

First, we show that the above system is indeed infeasible. For this, note that (EC.27a)-(EC.27c) imply

that ah = Jh(0,yes). This, together with (EC.27d)-(EC.27e) and (EC.25b), implies that a` >J`(0,yes)

and ag > Jg(0,yes). So we get a` > J`(0,yes), ag > Jg(0,yes), and ah = Jh(0,yes), contradicting

(EC.27a).

The equality in (EC.27a) comes from Lemma EC.4, which applies because η < ηTU
2 ≤ ηTU

3 , and

states that all outcomes in the core should be No-Deforestation Outcomes. Thus, the sum of all

allocations should be equal to w(L,0) = J`(0,yes) +Jg(0,yes) +Jh(0,yes).

The inequality (EC.27b) comes from the plausible deviation of ` and g, where they cooperate to

block any production by h. This applies because in our case

η1({{`, g},{h}}) = ∆g, (EC.28)

which together with (EC.26) implies that η < η1({{`, g},{h}}), which by Lemma 2 implies that

T ({{h},{`, g}}) = A({h};{{`, g}}) = {0}. This in turn implies that if ` and g were to form the

coalition {`, g}, they could block h and ensure a No-Deforestation Outcome where they would get

welfare J`(0,yes) +Jg(0,yes), so a` + ag must satisfy (EC.27b).

The inequality (EC.27c) comes from Lemma EC.2 and h∈L\G.

The two inequalities (EC.27d)-(EC.27e) come from two plausible deviations of {`,h} and {g,h},
respectively. Because ` and g are symmetric in our example, we show this for {`,h}. We have that

η3

(
{{g},{`,h}}

)
=

∆g

2
, (EC.29)
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which together with (EC.26) implies that η > η2({{g},{`,h}}), which by Lemma 2 implies that

{1}= T ({{g},{`,h}}) =A({g};{{`,h}}), which implies that {`,h} could deviate to a Deforestation

Outcome. A symmetric argument for {g,h} implies that any outcome in the core C(L;∅) must satisfy

(EC.27d)-(EC.27e), which proves the lemma for the case when E 6= ∅.

Finally, we note that the same instance but with E = ∅ would also lead to an empty core, as long

as η satisfies:

min
S⊆L,∆S<0

∆L\S
|S|

:=
∆`

2
=

∆g

2
< η <∆G = 2∆` = 2∆g.

The proof is identical to the one above, except that η1({{`, g},{h}}) takes value ∆G in (EC.28). �

Lemma EC.20. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0, E = ∅, and ηTU
2 :=

∆G
|L\G∪E| < η < η

TU
3 := maxS⊂L,∆S>0

∆S
|L\S∪E| ,

then the core may be empty.

Proof of Lemma EC.20. We consider an instance with L= {`, g,h} satisfying the conditions:

∆L > 0, ∆g > 0, ∆` = ∆h < 0, ∆{g,`} = ∆{g,h} >
∆g

2
.

Under these conditions, ηTU
2 :=

∆g
2
< ηTU

3 := ∆{g,`}. Assume the core contains an outcome with

allocation {a`}`∈L. We prove that this allocation has to satisfy the following infeasible system:

a` + ag + ah = J`(0,yes) +Jg(0,yes) +Jh(0,yes) (EC.30a)

a` + ag ≥ J`(0,yes) +Jg(0,yes) (EC.30b)

ag + ah ≥ Jg(0,yes) +Jh(0,yes) (EC.30c)

a` + ah ≥ J`(1,no)− c` +Jh(1,no)− ch. (EC.30d)

First, we show that the system is indeed infeasible. Equations (EC.30a)-(EC.30c) imply that ah ≤

Jh(0,yes) and a` ≤ J`(0,yes), which together with (EC.30d) imply that J`(1,no)−c`+Jh(1,no)−ch ≤

a` + ah ≤ J`(0,yes) +Jh(0,yes), which leads to a contradiction because ∆` < 0 and ∆h < 0.

We now prove that the system is implied by requirements that all core outcomes must satisfy.

Lemma EC.4 and η < ηTU
3 imply that only No-Deforestation Outcomes are in the core, so (EC.30a)

holds.

Inequalities (EC.30b)-(EC.30c) must hold, because if not, either {`, g} or {h, g} could profitably

deviate. To see this, assume a` + ag < J`(0,yes) + Jg(0,yes). Because η <∆{`,g} = η1({{`, g},{h}})

holds, Lemma 2 implies that {0}= T ({{h},{`, g}}) =A({h};{{`, g}}). Hence, the deviation would

guarantee {`, g} a welfare of J`(0,yes) + Jg(0,yes), which dominates the starting outcome. An

analogous argument also works for {h, g}.
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Lastly, inequality (EC.30d) must hold because otherwise coalition {`,h} could deviate towards

a deforestation equilibrium. Because
∆g
2

= η2({{g},{`,h}}) < η, Lemma 2 implies that {1} =

T ({{g},{`,h}}) =A({g};{{`,h}}), so {`,h} could derive a cumulative welfare of
∑

i∈{`,h}(Ji(1,no)−

ci) by deviating, so any allocation in the core must satisfy (EC.30d). �

Lemma EC.21. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. If ∆L > 0, E 6= ∅, and ηTU
2 :=

∆G
|L\G∪E| < η < η

TU
3 := maxS⊂L,∆S>0

∆S
|L\S∪E| ,

then the core may be empty.

Proof of Lemma EC.21. Consider an instance with E = {e} and L= {`, g1, g2, h} satisfying:

∆L > 0, ∆g1 = ∆g2 := ∆g > 0, ∆` = ∆h < 0, ∆g + ∆` > 0, ∆g + ∆` + ∆h < 0.

Under these conditions, ηTU
2 :=

2∆g
3
< ηTU

3 :=
2∆g+∆`

2
. Assume the core contains an outcome with

allocation {a`}`∈L. We prove that this allocation has to satisfy the following infeasible system:∑
i∈L

ai =
∑
i∈L

Ji(0,yes) (EC.31a)∑
i∈L\{x}

ai ≥
∑

i∈L\{x}

Ji(0,yes), ∀x∈ {`,h}. (EC.31b)∑
i∈L\{g}

ai ≥
∑

i∈L\{g}

(
Ji(1,no)− ci

)
, ∀g ∈ {g1, g2}. (EC.31c)

First, we show that the system is infeasible. (EC.31a) and (EC.31b) imply that a` ≤ J`(0,yes) and

ah ≤ Jh(0,yes), which then implies that:

∀g ∈ {g1, g2}, ag ≥
∑

i∈{g,`,h}

(
Ji(1,no)− ci

)
−

∑
i∈L\{`,h}

ai

>
∑

i∈{g,`,h}

Ji(0,yes)−
∑

i∈{`,h}

ai

≥ Jg(0,yes),

where the first inequality follows directly from (EC.31c), the second (strict) inequality follows because

∆{g,`,h} < 0, ∀g ∈ {g1, g2} from (EC.1), and the last inequality follows because ax ≤ Jx(0,yes), ∀x∈

{`, g}. But then, this implies that
∑

i∈L ai >
∑

i∈L Ji(0,yes), which contradicts (EC.31a).

We now prove that the system is implied by requirements that all core outcomes must satisfy.

Lemma EC.4 and η < ηTU
3 imply that only outcomes with d∗ = 0 are in the core, so (EC.31a) holds.

Inequalities (EC.31b) must hold because otherwise, either {g1, g2, `} or {g1, g2, h} could prof-

itably deviate. To see this, assume for instance that
∑

i∈{g1,g2,`} ai <
∑

i∈{g1,g2,`} Ji(0,yes). Because

η1({{g1, g2, `},{h}}) = ∆g + ∆`
2

= ηTU
3 > η holds, Lemma 2 implies that {0}= T ({{h},{g1, g2, `}}) =

A({h};{{g1, g2, `}}). Hence, the deviation would guarantee {g1, g2, `} a welfare of
∑

i∈{g1,g2,`} Ji(0,yes),

which would dominate the starting outcome. An analogous argument also works for {g1, g2, h}.
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Lastly, inequalities (EC.31c) must hold because otherwise either {g1, `, h} or {g2, `, h} could

profitably deviate towards a deforestation equilibrium. To see this for instance for {g1, `, h}, note that

η2({{g1, `, h},{g2}}) =
∆g
3

because ∆{g1,`,h} < 0 by (EC.1), so < η holds in this case, so Lemma 2 would

imply that {1}= T ({{g2},{g1, `, h}}) =A({g2};{{g1, `, h}}), so {g1, `, h} could derive a cumulative

welfare of
∑

i∈{g1,`,h}(Ji(1,no)− ci) by deviating, so any allocation in the core must satisfy (EC.31c).

An analogous argument holds for {g2, `, h}. �

Lemma EC.22. Consider the Area Regeneration condition R in the cooperative game with trans-

ferable utility defined in §3.3. The core may be empty if ∆L < 0.

Proof of Lemma EC.22. Consider an example with three locals L = {`, g,h} and no entrants

(E = ∅) in which exactly one local g prefers the incentive (G = {g}), the other two locals prefer

deforestation to the extent that:

∆g + ∆` < 0, ∆g + ∆h < 0, (EC.32)

and the cost of blocking is sufficiently low that

η <∆g/2. (EC.33)

The core cannot contain an outcome with a partition in which the local g forms a singleton coalition

because (EC.33) and Lemma 2 imply that for any partition of the other two locals π{`,h} ∈Π{`,h},

T ({{{g}}∪π{`,h}) = {0}, so any such outcome must have an allocation that satisfies∑
`∈L

a` =
∑
`∈L

J`(A`,0,yes),

and would therefore be dominated by the formation of the grand coalition {L}. Observe that (EC.32)

implies T ({L}) = {1} which guarantees strictly higher aggregate welfare of
∑

`∈L(J`(1,no)− c`).

If a local h ∈ L \ G forms a singleton coalition, we claim that the core C(L\ {h};{{h}}) for the

residual game for locals R=L\ {h} is non-empty and contains all outcomes that satisfy

πR = {R} (EC.34)

d∗ = 1 (EC.35)∑
`∈R

a` =
∑
`∈R

[
J`(1,no)− c`

]
(EC.36)

a` ≥ J`(0,yes) for all `∈R. (EC.37)

We distinguish two cases, depending on whether the outcomes in C(R;{{h}}) involve the grand

coalition {R} or the partition of singletons (this is exhaustive since |R| = 2). For any outcomes

corresponding to the grand coalition {R}, Lemma 2, (EC.32) and h∈L\G imply that T ({{R}}∪
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{{h}}) = {1}, and therefore (EC.35) and (EC.36) hold. These outcomes are undominated if and only

if they satisfy (EC.37); this follows since the only possible deviations from R are by a (sub)coalition

consisting of one local, leading to a game with singleton coalitions and a` = J`(0,yes) for all `∈R,

due to (EC.33) and g ∈R. Finally, (EC.32) also implies that the set of allocations satisfying (EC.36)-

(EC.37) is nonempty. The argument above also shows that all the outcomes corresponding to the

partition of singletons are dominated: these outcomes have a` = J`(0,yes) for all ` ∈ R and are

dominated by outcomes that satisfy (EC.37) with a strict inequality for every `∈R, which exist in

view of (EC.32). �

EC.1.1. Proofs for the Results In §4

In this section, we maintain Assumption 1 (which implies φ` ≥ 0 for every ` ∈ L), but we relax

some of the other working assumptions in §2. Specifically, Assumption 3 is relaxed to allow for

G =L. Additionally, when characterizing the idiosyncratic payments {φ`}`∈L that minimize the total

payment
∑

`∈L φ`, we also relax the requirement that either φ` > δ` or φ` < δ` to allow for φ` = δ` (to

obtain closed sets and the existence of optimal solutions in the optimization problems).

Proposition 1. Consider the setting without coordination and utility transfer in §3.2 and without

entrants (E = ∅), and any incentive satisfying φ` ≥ 0 for every `∈L.

(i) The incentives that guarantee that the area regeneration condition R prevents deforestation are

all the {φ`}`∈L that satisfy:

max
`∈L

(φ`− δ`)> η · (|L|− 1 + |E|). (EC.38)

(ii) The incentives that minimize the total payment
∑

`∈L φ` and guarantee that the area regenera-

tion condition R prevents deforestation are all the {φ`}`∈L that satisfy:

φi = δi + η · (|L|− 1 + |E|), for some i∈ arg min
`∈L

{δ`} (EC.39a)

φ` = 0, for all `∈L\ {i}. (EC.39b)

(iii) The incentives that guarantee that the area regeneration condition R prevents deforestation

with compensation are all the {φ`}`∈L that satisfy:

(EC.38) and φ` > δ` for all `∈L. (EC.40)

(iv) The incentives that minimize the total payment
∑

`∈L φ` and guarantee that the area re-

generation condition R prevents deforestation with compensation are all the {φ`}`∈L that satisfy:

φi = δi + η · (|L|− 1 + |E|), for some i∈L (EC.41a)

φ` = δ`, for all `∈L\ {i}. (EC.41b)
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(v) The incentives that guarantee that the individual condition I prevents deforestation (and

achieves compensation) are all the {φ`}`∈L that satisfy:

φ` > δ` for all `∈L. (EC.42)

(vi) The infimum of the total payment to prevent deforestation with compensation under the

individual condition I is
∑

`∈L δ`.

(vii) No incentive can prevent deforestation with the area no-deforestation condition N.

Proof. (i) By Lemma 2, under R, when locals cannot transfer utility (π= {{`} : `∈L}), the set of

equilibria Q(π,R) contains only no-deforestation equilibria T (π) = {0} if and only if η < η1(π) =

maxg∈G
∆g

|L|−1+|E| = max`∈L
∆`

|L|−1+|E| . Notice that this result does not require Assumption 3. Rewriting

this condition in terms of the incentives, we obtain (EC.38).

(ii) Consider the problem of minimizing the monetary cost to the interested party while preventing

deforestation (and allowing for φ` = δ`):

min
{φ`}`∈L

∑
`∈L φ`

subject to φ` ≥ 0, for all `∈L
max`∈L(φ`− δ`)≥ η · (|L|− 1 + |E|),

(EC.43)

Any optimal solution {φ`}`∈L will satisfy that max`∈L(φ`− δ`) = η · (|L|− 1 + |E|), as otherwise the

objective could be lowered by lowering the φi for every i∈ arg max`∈L(φ`−δ`). Moreover, any optimal

solution must satisfy φi = δi + η · (|L|− 1 + |E|) for some i∈L and φj = 0 for all other j 6= i. This is

because if φi = δi + η · (|L|− 1 + |E|) and φ` > 0 for any other ` 6= i, the objective could be lowered

by taking φ` = 0. Moreover, because in any optimal solution
∑

`∈L φ` = δi + η · (|L| − 1 + |E|) for

some i∈L, then i∈ arg min`∈L δ`. This shows that any optimal solution for problem (EC.43) must

satisfy (EC.39a)-(EC.39b). In turn, because any solution satisfying (EC.39a)-(EC.39b) is feasible

for (EC.43) and achieves the same objective as an optimal solution, it must also be optimal.

(iii) Without utility transfer, the only way to prevent deforestation with compensation is to satisfy

(EC.38) and also ∆` > 0 (or equivalently, φ` > δ`) for every `∈L, which proves the result.

(iv) Consider the problem of minimizing the monetary cost to the interested party while preventing

deforestation with compensation (and allowing for φ` = δ`):

min
{φ`}`∈L

∑
`∈L φ`

subject to φ` ≥ 0, for all `∈L
max`∈L(φ`− δ`)≥ η · (|L|− 1 + |E|)
φ` ≥ δ` for all `∈L.

(EC.44)

Based on arguments that parallel those in the proof of (ii), it can be readily seen that any optimal

solution {φ`}`∈L satisfies max`∈L(φ`− δ`) = η · (|L|− 1 + |E|) and that φi = δi + η · (|L|− 1 + |E|) for a

single (but arbitrarily chosen) i∈L and φ` = δ` for all other ` 6= i.
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(v) As discussed in §2, I, prevents deforestation with compensation if and only if ∆` > 0, or

equivalently, φ` > δ`, for all `∈L, and E = ∅.

(vi) The result is immediate as I prevents deforestation (and prevents deforestation with compen-

sation, respectively) if and only if (EC.42) holds.

(vii) Corollary 1 implies that N cannot prevent deforestation if G ⊂L or if E 6= ∅. We then show that

a deforestation equilibrium exists even if G =L and E = ∅. To see this, consider the decisions d = 1

and B(d)≡ 0. These must be an equilibrium in Q(π,N) for π = {{`} : `∈L}, because κN(d,B) = no,

and no unilateral deviation of any local `∈L can change this. Therefore, no local would deviate from

this deforestation equilibrium even if φ` > δ` for every `∈L. �

Proposition 2. Consider the setting without coordination and utility transfer in §3.2 and with

entrants (E 6= ∅), and any incentive satisfying φ` ≥ 0 for every `∈L.

(i) The incentives that guarantee that the area regeneration condition R prevents deforestation are

all the {φ`}`∈L that satisfy (EC.38).

(ii) The incentives that minimize the total payment
∑

`∈L φ` and guarantee that the area regenera-

tion condition R prevents deforestation are all the {φ`}`∈L that satisfy (EC.39a)-(EC.39b).

(iii) The incentives that guarantee that the area regeneration condition R prevents deforestation

with compensation are all the {φ`}`∈L that satisfy (EC.38)-(EC.40).

(iv) The incentives that minimize the total payment
∑

`∈L φ` and guarantee that the area regener-

ation condition R prevents deforestation with compensation are the {φ`}`∈L that satisfy (EC.41a)-

(EC.41b).

(v) No incentive can prevent deforestation with the area no-deforestation condition N or with the

individual condition I, even if L= G.

Proof. (i) - (iv) The proofs of these results are identical to those in Proposition 1 (i)-(iv), which do

not depend on the presence of entrants.

(v) Corollary 1 implies that N cannot prevent deforestation if G ⊂L or if E 6= ∅. Finally, as shown

in §2, the individual condition fails to prevent deforestation if E 6= ∅. �

Proposition 3. Consider the setting with coordination and utility transfer from §3.3 and without

entrants (E = ∅), and any incentive satisfying φ` ≥ 0 for every `∈L.

(i) The incentives that guarantee that the no-deforestation condition N prevents deforestation (and

achieves compensation, respectively) are all the {φ`}`∈L that satisfy:∑
`∈L

φ` >
∑
`∈L

δ`. (EC.45)

(ii) The infimum total payment to prevent deforestation with compensation under the area no-

deforestation condition N is
∑

`∈L δ`.
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(iii) The incentives that guarantee that the regeneration condition R prevents deforestation are all

the {φ`}`∈L that satisfy (EC.45).

(iv) The incentives that guarantee that the regeneration condition R prevents deforestation with

compensation are all the {φ`}`∈L that satisfy:{∑
`∈L φ` >

∑
`∈L δ` and

∑
`∈G φ` < η+

∑
`∈G δ`, where G = {`∈L : φ` > δ`}, if ∃`∈L : φ` < δ`∑

`∈L φ` >
∑

`∈L δ` and φ` > δ` for all `∈L otherwise.

(EC.46)

(v) The incentives that guarantee that the individual condition I prevents deforestation (and

achieves compensation, respectively) are all the {φ`}`∈L that satisfy φ` > δ`, for all `∈L.

Proof. (i) If L 6= G, by Theorem 1, the core with N only contains Compensation Outcomes if and

only if ∆L > 0 and E = ∅, which is equivalent to
∑

`∈L φ` >
∑

`∈L δ` in this setting.

We show that the core contains only Compensation Outcomes if L = G. First, we note that

the core contains only No-Deforestation Outcomes. This follows because L = G implies ∆L > 0,

so Lemma 2 implies that 0∈A(∅,{L}) and the grand coalition would always profitably deviate from

any Deforestation Outcome. Second, we show that any No-Deforestation Outcome in the core must

satisfy a` ≥ J`(1,no)− c`, for all `∈L. Assume to reach a contradiction that ai <Ji(1,no)− ci; but

then, {i} would deviate because w({i},d)>ai for any d∈ {0,1} (because ∆i > 0). This shows that

the core contains only Compensation Outcomes if L= G.

(ii) The proof is immediate from (i): a set of minimizing incentives can be obtained by considering

φ` = δ` + ε in the limit as ε→ 0.

(iii) If L 6= G, then, by Theorem 2 (a)-(e), the area regeneration condition R prevents deforestation

if and only if ∆L > 0, or equivalently
∑

`∈L φ` >
∑

`∈L δ`. On the other hand, if L= G, then the core

can only contain No-Deforestation Outcomes, as any Deforestation Outcome would be dominated by

a deviation of the grand coalition L. Finally, L= G implies that
∑

`∈L φ` >
∑

`∈L δ`, and therefore, in

both cases, R prevents deforestation if and only if
∑

`∈L φ` >
∑

`∈L δ`.

(iv) If G 6= L (or equivalently, there exists ` ∈ L such that φ` < δ`), by Theorem 2, when E = ∅,

the core contains only Compensation Outcomes under R if and only if ∆L > 0 and η >∆G, where

G = {` ∈ L : ∆` > 0}. Rewriting these two conditions in terms of the incentives φ`, we obtain∑
`∈L φ` >

∑
`∈L δ` and

∑
`∈G φ` >

∑
`∈G δ` + η. On the other hand, if L= G, then, as shown in (iii),

the regeneration condition R prevents deforestation, and therefore, as φ` > δ`, for all `∈L, it prevents

deforestation with compensation as well.

(v) The proof is identical to the proof of Proposition 1 (v). �

Proposition 4. Consider the setting with coordination and utility transfer in §3.3 and with

entrants (E 6= ∅), and any incentive satisfying φ` ≥ 0 for every `∈L.
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(i) The incentives that guarantee that the regeneration condition R prevents deforestation are all

the {φ`}`∈L that satisfy:∑
`∈L

φ` >
∑
`∈L

δ` (EC.47a)∑
i∈H

φi > η · (|L|− |H|+ |E|) +
∑
i∈H

δi, for some H ⊆L. (EC.47b)

(ii) The incentives that minimize the total payment
∑

`∈L φ` and guarantee that R prevents

deforestation are all the {φ`}`∈L that satisfy:∑
i∈S

φi > η · (|L|− |S|+ |E|) +
∑
i∈S

δi, for some S ⊆L, (EC.48a)∑
`∈L

φ` = max
{
η · (|L|− |H|+ |E|) +

(∑
i∈H

δi
)
,
∑
`∈L

δ`

}
, for H ={`∈L : δ` < η}∪ {i}

for some i∈ arg min
j∈`

δj.

(EC.48b)

(iii) The incentives that guarantee that R prevents deforestation with compensation are all the

{φ`}`∈L that satisfy:

φ` ≥ δ`, for all `∈L, (EC.49a)∑
`∈L

φ` >
∑
`∈L

δ` (EC.49b)∑
i∈H

φi > η · (|L|− |H|+ |E|) +
∑
i∈H

δi, for some H ⊆L. (EC.49c)

(iv) The incentives that minimize the total payment
∑

`∈L φ` and guarantee that R prevents

deforestation with compensation are the {φ`}`∈L that satisfy:

φ` ≥ δ`, for all `∈L, (EC.50a)∑
`∈L

φ` =
∑
`∈L

δ` + η · |E|. (EC.50b)

Proof. (i) Notice that Lemma EC.4 and EC.6 do not require Assumption 3, and together imply that

under the area regeneration condition R, the core contains only No-Deforestation Outcomes if and

only if η < ηTU
4 = maxS⊆L

∆S
|L\S|+|E| and ∆L > 0. It is immediate to see then that these two conditions

are equivalent to (EC.47a)-(EC.47b).

ii) By part (i), the problem of minimizing the monetary cost to the interested party while preventing

deforestation can be written as:

min
{φ`}`∈L

∑
`∈L φ`

subject to φ` ≥ 0, for all `∈L∑
`∈L φ` ≥

∑
`∈L δ`∑

i∈H φi ≥ η · (|L|− |H|+ |E|) +
∑

i∈H δi, for some H ⊆L.

(EC.51)
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First, we show that any optimal solution to (EC.51) satisfies conditions (EC.48a)-(EC.48b). Clearly,

(EC.48a) must hold, as the optimal solution must be feasible. To see that (EC.48b) must hold,

consider that the minimum value of η · (|L| − |H| + |E|) +
(∑

i∈H δi
)

over H ⊆ L is achieved at

H = {`∈L : δ` < η}, if there exists any `∈L, such that δ` < η, and H = {`} for any `∈ arg mini∈L δi

otherwise. This implies that
∑

j∈L φj ≥
∑

i∈H φi ≥ η · (|L| − |H|+ |E|) +
(∑

i∈H δi
)
. This, together

with the fact that
∑

`∈L φ` ≥
∑

`∈L δ`, implies that∑
`∈L

φ` ≥max
{
η · (|L|− |H|+ |E|) +

(∑
i∈H

δi
)
,
∑
`∈L

δ`

}
.

To show that the optimal value must be exactly this maximum, we can observe that setting∑
i∈H

φi = max
{
η · (|L|− |H|+ |E|) +

(∑
i∈H

δi
)
,
∑
`∈L

δ`

}
,

and φj = 0, for any j ∈ L \H, is always a feasible solution to (EC.51) that achieves the desired

objective. Therefore, any optimal solution must satisfy (EC.48a)-(EC.48b). Vice-versa, any solution

that satisfies these conditions is feasible and achieves the optimal objective value in (EC.51), so it

must be optimal.

iii) Theorem 2 implies that when E 6= ∅, condition R cannot prevent deforestation with compensation

if G 6=L (Assumption 3 holds) or ∆L ≤ 03. Additionally, Lemma EC.6 implies that the core under R

contains Deforestation Outcomes if η ≥ ηTU
4 = maxS⊆L

∆S
|L\S|+|E| (even if G =L holds). Therefore, if

the incentive prevents deforestation with compensation under R, it must satisfy that L= G, ∆L > 0,

and η < ηTU
4 . These three conditions are equivalent to (EC.49a)-(EC.49c).

We only need to show then that (EC.49a)-(EC.49c) imply that R prevents deforestation with

compensation. By Lemma EC.4, which holds even if Assumption 3 does not, (EC.49b) and (EC.49c)

imply that the core contains only No-Deforestation Outcomes. But then, because (EC.49a) implies that

L= G, we have a` ≥min{J`(0,yes), J(1,no)− c`}= J(1,no)− c`, for every `∈L and any allocation

{a`}`∈L of any outcome in the core. Therefore, the core contains only No-Deforestation Outcomes

that satisfy a` ≥ J(1,no)− c`, which implies that R prevents deforestation with compensation.

iv) By part iii), the problem of minimizing the monetary cost to the interested party while

preventing deforestation with compensation (and allowing for φ` = δ`) can be written as:

min
{φ`}`∈L

∑
`∈L φ`

subject to φ` ≥ δ`, for all `∈L∑
`∈L φ` >

∑
`∈L δ`∑

i∈H φi ≥ η · (|L|− |H|+ |E|) +
∑

i∈H δi, for some H ⊆L.

(EC.52)

First, we show that the optimal objective value in (EC.52) is exactly
∑

`∈L φ` =
∑

`∈L δ` + η · |E|.
Combining (EC.49a) and (EC.49c), we obtain that

∑
`∈L φ` ≥

∑
`∈L δ` + η · (|L|− |H|+ |E|)≥ η · |E|,

3 Note that Lemmas EC.6 and EC.17 can be readily extended to show that when ∆L = 0 and E 6= ∅, condition R cannot prevent
deforestation with compensation.
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where H ⊆L is some subset of locals. We provide a feasible solution that exactly obtains this objective

value. For this, consider φj = δj +η · |E| for some j ∈L, and φi = δi, for all i∈L, i 6= j. By construction,∑
`∈L φ` =

∑
`∈L δ` + η · |E|. This distribution is feasible for (EC.52). We have shown then that the

optimal objective value for (EC.52) is
∑

`∈L φ` =
∑

`∈L δ` + η · |E|, which implies that (EC.50b) must

hold for any optimal solution. Requirement (EC.50a) must hold as well, as it is required for R to

prevent deforestation with compensation, as shown in (iii).

Finally, any set of incentives that satisfy (EC.50a) and (EC.50b) is readily feasible in prob-

lem (EC.52) (taking H =L for (EC.49c)), which also implies that these are optimal. �

EC.1.2. Results for the Instance Obtained by Scaling the Number of Locals

Proposition 5. Consider a problem instance characterized by L = {1,2, . . . , |L|}, E =

{1,2, . . . , |E|} and a given {∆`}`∈L. For a positive integer k, consider a new problem instance obtained

by duplicating the original instance k times, that is, where the set of locals is L̃ := {1,2, . . . , k · |L|},

the set of entrants is Ẽ := {1,2, . . . , k · |E|}, and ∆̃i = ∆1+((i−1) mod |L|) for all i∈ L̃.

(i) The individual condition I prevents deforestation (and achieves compensation, respectively) for

the problem instance with L, E and {∆`}`∈L if and only if it prevents deforestation (and achieves

compensation, respectively) for the problem instance with L̃, Ẽ and {∆̃i}i∈L̃.

(ii) If locals cannot coordinate and transfer utility, the area regeneration condition R prevents

deforestation (and achieves compensation, respectively) for the problem instance with L, E , {∆`}`∈L
and a blocking cost of η if and only if it prevents deforestation (and achieves compensation, respectively)

for the problem instance with L̃, Ẽ and {∆̃i}i∈L̃ and a blocking cost of η · |L|−1+|E|
|L|·k−1+|E|·k .

(iii) If locals can coordinate and transfer utility, the area no-deforestation condition N prevents

deforestation (and achieves compensation, respectively) for the problem instance with L, E , {∆`}`∈L
if and only if it prevents deforestation (and achieves compensation, respectively) for the problem

instance with L̃, Ẽ and {∆̃i}i∈L̃.

(iv) If locals can transfer utility, the area regeneration condition R prevents deforestation (and

achieves compensation, respectively) for the problem instance with L, E , {∆`}`∈L and a blocking cost

of η if and only if it prevents deforestation (and achieves compensation, respectively) for the problem

instance with L̃, Ẽ and {∆̃i}i∈L̃ and a blocking cost of η.

Proof: (i) As discussed in §2, the individual condition I prevents deforestation (and also achieves

compensation) if and only if ∆` > 0,∀ `∈L and E = ∅, which holds if and only if ∆`i > 0,∀ `i ∈ L̃ and

Ẽ = ∅.

(ii) By Lemma 2, under R and when locals cannot transfer utility, the set of equilibria Q(π,R) (with

partition π = {{`} : ` ∈ L}) contains only no-deforestation equilibria T (π) = {0} if and only if η <

η1(π) = maxg∈G
∆g

|L|−1+|E| = max`∈L
∆`

|L|−1+|E| , which holds if and only if max`∈L∆` > η · (|L|− 1 + |E|),
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or equivalently, max`∈L∆` > η |L|−1+|E|
|L|·k−1+|E|·k · (|L| · k− 1 + |E| · k). The latter holds if and only in the

problem instance with L̃, Ẽ and {∆̃i}i∈L̃ and in the case without cooperation and utility transfer

under R, the set of equilibria Q(π̃,R) (with partition π̃ = {{i} : i∈ L̃}) contains only no-deforestation

equilibria for the blocking cost η · |L|−1+|E|
|L|·k−1+|E|·k .

(iii) If locals can transfer utility, by Theorem 1,N prevents deforestation (and achieves compensation,

respectively) in the problem instance with L, E , {∆`}`∈L if and only if E = ∅ and ∆L > 0, which

occurs if and only if Ẽ = ∅ and ∆̃L̃ > 0, which gives the desired result.

(iv) If locals can transfer utility, by Theorem 2, R prevents deforestation in the problem instance

with L, E , {∆`}`∈L if and only if η < ηTU
4 = maxS⊆L

∆S
|L|−|S|+|E| , or equivalently,

∆S > η · (|L|− |S|+ |E|) for some S ⊆L. (EC.53)

Similarly, R prevents deforestation for the instance with L̃, Ẽ , ∆̃ if and only if

∆̃S̃ > η · (|L̃| − |S̃|+ |Ẽ |) for some S̃ ⊆ L̃. (EC.54)

We will show that (EC.53) and (EC.54) are equivalent. That (EC.53) implies (EC.54) is immediate,

simply by taking the set S̃ = {`+n · |L| : `∈ S, n∈ {0, . . . , k− 1}} ⊆ L̃. To show that (EC.54) implies

(EC.53), we first argue that if (EC.54) holds for some S̃ ⊆ L̃, it must hold for H̃ = {`+n · |L| : ` ∈

H, n∈ {0, . . . , k− 1}} where H = {`∈L : ∆` >−η}. From this, it is immediate that H must satisfy

(EC.53).

Assume S̃ * H̃, consider then f ∈ S̃ \ H̃. We have that ∆S̃\{f} > η · (|L̃| − |S̃| + |Ẽ |) − ∆f ≥

η · (|L̃| − |S̃ \ {f}|+ |Ẽ |), where the last inequality comes from f /∈ H̃, which implies that −∆f ≥ η.

But then, S̃ \ f satisfies (EC.54) as well. We can thus assume that S̃ ⊆ H̃.

If S̃ ⊂ H̃, consider f ∈ H̃ \ S̃. Because f ∈ H̃ and S̃ satisfies (EC.54), then ∆S̃ + ∆f > η · (|L̃| −

|S̃|+ |Ẽ |) + ∆f > η · (|L̃| − |S̃ ∪ {f}|+ |Ẽ |). Therefore, any f ∈ H̃ \ S̃ can be included and (EC.54)

would still hold, showing that H̃ must satisfy (EC.54).

Finally, by Proposition 4, R would prevent deforestation with compensation for the instance with

L, E and {∆`}`∈L if and only if (EC.53) holds and ∆` > 0 for every ` ∈ L, which is equivalent to

(EC.54) and ∆̃i > 0, for every i∈ L̃, implying the desired result. �

EC.2. Modeling Extensions
EC.2.1. Optimistic Recursive Core

Next, we define the optimistic recursive core and show that any outcome in the optimistic recursive

core must also be in the pessimistic recursive core. This implies that if the forest is protected and

locals are better off in all pessimistic recursive core outcomes, then the same is true in all optimistic

recursive core outcomes.
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Definition EC.1 (Optimistic Recursive Core). Suppose that for an integer k ∈ [1, |L|− 1],

the optimistic core Co(R;πL\R) is defined for every residual game in which a set of locals R⊂L with

|R| ∈ [1, k] responds to a partition of the other locals πL\R ∈ΠL\R. For k= 1, the residual game has a

single local R= {`} and the core Co({`};πL\{`}) is the set of triples of partition, equilibrium decisions,

and allocations
(
{{`}}, (d∗,B∗), a`

)
with a` =w

(
{`},{{`}}, (d∗,B∗)

)
and (d∗,B∗)∈Q({{`}}∪πL\{`}).

For a residual game with |R|= k+ 1, the core Co(R;πL\R) is the set of undominated outcomes, where

an outcome with allocation {a`}`∈R and partition πR is dominated if there exists a coalition H ⊆R

that forms partition πH ∈ΠH , and there exist also a (sub)partition π∗R\H and equilibrium decisions

(d′∗,B′∗) where

w
(
S,πH ∪πL\R ∪π′R\H , (d′

∗
,B′

∗
)
)
>
∑
`∈S

a`

for every coalition S ∈ πH and the (sub)partition π∗R\H and equilibrium decisions (d′∗,B′∗) satisfy:
(
π′R\H , (d

′∗,B′∗),{a`}`∈R\H
)
∈Co(R \H;πH ∪πL\R) if H ⊂R and Co(R \H;πH∪πL\R) 6= ∅

π′R\H ∈ΠR\H and (d′∗,B′∗)∈Q(πH ∪πL\R ∪π′R\H) if H ⊂R and Co(R \H;πH∪πL\R) = ∅.
(d′∗,B′∗)∈Q(πH ∪πL\R ∪π′R\H) if H =R

The recursive core of the TU cooperative game among all locals is Co(L;∅).

Notice that the optimistic core Co(L;∅) differs from the pessimistic core defined in (2) only in

the notion of dominance: While in a pessimistic core a coalition set would have to be better off in

all outcomes of the remaining locals (R \H), in the optimistic core, deviating coalitions need only

be better off for one feasible outcome. It is then immediate by the definition that any optimistic

outcome would also be pessimistic, as any dominated outcome in the pessimistic sense would have to

be dominated in the optimistic sense. Our next proposition shows this rigorously using the recursive

definitions of both core concepts.

Proposition 6. Given any cooperative game with transfer of utilities as defined in § 2, the

optimistic core Co(L;∅) must be included in the pessimistic core C(L;∅), defined in (2).

Proof of Proposition 6.

We will prove that for everyR⊆L, and partition πL\R, Co(R;πL\R)⊆C(R;πL\R), which, takingR=

L, implies the proposition. We then proceed by induction in |R|. For |R|= 1, note that Co(R;πL\R) =

C(R;πL\R), because both definitions coincide when the residual game is of size 1.

Thus, our inductive assumption is that Co(R;πL\R) ⊆ C(R;πL\R), for any set R ⊆ L and

(sub)partition πL\R, such that |R| ≤ k.

Let R⊆L such that |R|= k+ 1. Assume by contradiction that there is an outcome in Co(R;πL\R)

that is not in C(R;πL\R), for some (sub)partition πL\R, with allocation {a∗`}`∈L. But this implies

that this outcome must be dominated according to the pessimistic definition in (2), which implies

that there exists a coalition H ⊆R that forms the partition πH ∈ΠH that would prefer to deviate

from all the outcomes of the remaining locals in R \H. But, because |R \H| ≤ k, the inductive
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assumption implies that H must also have a positive deviation under the optimistic definition. This

leads to a contradiction, as the outcome being in Co(R;πL\R implied that it was undominated under

the optimistic definition. Therefore, we have proved the case for |R|= k+ 1 and the proposition. �

EC.2.2. Result with farmers that would not deforest absent the incentive

We assume in §2 that all farmers would deforest absent the incentive (δ` > 0, for all `∈L). In this

section, we generalize our main results for the case where δ` < 0 for some ` ∈ L. We assume that

δ` > 0 for at least one ` ∈ L (i.e., there is at least one local that would deforest). The proofs are

identical to the ones presented above.

Proposition 7. Without coordination and utility transfer, the area no-deforestation condition N

prevent deforestation only if L= G, whereas the area regeneration condition R prevents deforestation

if

η <
maxg ∈ G∆g

|{`∈L : δ` > 0}|− 1 + |E|
,

albeit without achieving compensation.

Proposition 8. With coordination and utility transfer, the area conditions N and R prevent

deforestation only if locals prefer the incentive (L > 0), in which case: (a) Without entrants,

N and R prevent deforestation; N achieves compensation and R achieves compensation if η >∑
`∈L:δ`>0 and ∆`>0 ∆`; (b) With entrants, N cannot prevent deforestation, whereas R prevents defor-

estation if η <maxS⊆{`∈L:δ`>0}
∆S

|{`∈L:δ`>0}\S|+|E| .

EC.3. Details on Illustration in Indonesia

Our full survey consists of data from 420 farmers in 60 villages, out of which we use a subset of from

391 farmers from 58 villages in two regencies of East Kalimantan, Indonesia. This constitutes all

farmers in our survey with total land less than 20 ha and all villages with at least two observations.

In Figure EC.1 shows all villages in East Kalimantan, as well as those in the survey data.

We use the farmer and plot level data specified in Figure 5.3 for each farmer (left). Figure EC.2

shows the distributions of the data collected. We deal with missing prices, costs, and interest rate

values for each farmer by considering the median over the available data. Finally, because some farmers

reported overly optimistic production values in our survey, we limit their maximum production

quantities using the maximum attainable yields for palm trees in Indonesia (as a function of the age

of the trees) according to Hoffmann et al. (2014).

EC.3.1. Data Envelope Analysis

In order to obtain the production frontier while systematically accounting for outliers, we use m-

estimator Data Envelope Analysis defined by Aragon et al. (2005). We obtain the production frontier
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Indonesia

West Kalimantan

East Kalimantan

Desa Boundaries

Desa Boundaries in Survey

Figure EC.1 Map of East and West Kalimantan, Indonesia, showing the divisions into all rural villages (desa) in orange, and

those in the survey in red. Darker shades of green denote more forest cover.
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Figure EC.2 Distributions of key parameters in our data set. Each observation corresponds to a particular farmer and plot
except the interest rates, where each observation corresponds to a specific farmer.

u(A) by applying Algorithm 1 to the set of points {(A`, q̂`) : `∈∪jLj}, where ∪jLj is the union of all

the villages in the data-set.
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Algorithm 1 Production Frontier u(x)

Require: x≥ 0, {(A`, v̄`) : `∈L}

1: procedure u(x)

2: for A∈∪`∈∪jLjA` do

3: for b= 1 to B do

4: {q1
b , ..., q

m
b }← A random sample with replacement of size m from {v̄` :A` ≤A}

5: hb(A)←max{q1
b , ..., q

m
b }

6: end for

7: h(A)← 1
B

B∑
b=1

hb(A)

8: end for

9: {
(
A, ĥ(A)

)
}← convex hull of {

(
A,h(A)

)
:A∈∪`∈∪jLjA`}

10: if x≤ max
`∈∪jLj

A` then

11: u(x)← linear interpolation of {
(
A, ĥ(A)

)
} at x

12: else

13: u(x)← u( max
`∈∪jLj

A`)

14: end if

15: end procedure

The procedure for obtaining the production frontier u(x), for any x≥ 0 detailed in Algorithm 1

works in three parts: a) first, it obtains the expected value of the DEA frontier defined by a sub-sample

of m points with total area A` ≤ x. It uses a Monte-Carlo simulation, sampling B times and taking

the average. We set B = 500, and m = 150. b) Because the sampling procedure in (a) need not

produce a concave function, this step computes the convex hull of the points obtained. c) Finally,

a linear interpolation of the points in the convex hull leads to the value of u(x). We assume the

production would be constant for any x larger than the maximum total land registered in our data

set.

EC.3.2. Additional Data Sources

We estimate the total number of palm farmers in each village |L| by multiplying the average number

of households that farm palm fruit in East Kalimantan, 38% according to BPS, Indonesia (2013), by

the number of households in each village, which we estimate by dividing the available population

data for each district by the number of villages in the district and then dividing this population by

5.12, the average household size in East Kalimantan according to BPS, Indonesia (2010). Table EC.1

shows these estimates for each district.
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District District
Population
(people)

Number of
Villages

Village
Population
(people)

Village
Households

Palm Farmers |L|

Tanah Grogot 63,311 16 3,957 773 295
Waru 15,643 4 3,911 764 292
Penajam 66,983 23 2,912 569 217
Batu Sopang 22,540 9 2,504 489 187
Babulu 29,434 12 2,453 479 183
Sepaku 30,863 15 2,058 402 154
Pasir Belengkong 23,543 15 1,570 307 117
Kuaro 23,934 13 1,841 360 137
Long Ikis 36,701 26 1,412 276 105
Tanjung Harapan 7,720 7 1,103 215 82
Batu Engau 11,662 13 897 175 67
Muara Samu 4,221 9 469 92 35

Table EC.1 District and village information, including the estimated number of palm farmers |L|.
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Figure EC.3 Histogram of the estimated optimal area to deforest x∗ at T = 20 years, with upper limit (lower limit) showing
the maximum (minimum) number of farmers in each bucket for T ∈ [15,60] years.

To generate the maps in Figure 5.8, we combined global data on forest canopy cover from Potapov

et al. (2021) with the village boundaries extracted from the sub-national administrative boundaries

from Indonesia from OCHA (2020).

EC.3.3. Robustness with respect to the planning horizon T

Due to the heavy discounting, the results presented in §5 present very little variation for any price T

above 15 years. We computed all our results with T ∈ [15,60] years to show this. Figure EC.3 shows

that the deforestation distribution would remain almost identical for any T in that range. While

Figures EC.4 and EC.5 show that the uniform and village-specific minimum prices would also change

very little. The most meaningful change is that of the uniform minimum price that would prevent

deforestation with compensation in all 58 villages under the individual incentive, which changes

between 4,456 USD/tFFB considering T = 15 years and 5,193 USD/tFFB considering T = 60 years.
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Figure EC.4 Minimum price premium p∗ that would prevent deforestation (left) and achieve compensation (right) in all
villages, for T = 20 years, together shaded areas showing the variation for T ∈ [15,60] years.
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Figure EC.5 Fraction of villages in which each condition prevents deforestation (left) and achieves compensation (right) as
a function of the price premium p∗, considering η= 3,000 USD and T = 20 years. The shaded areas show the variation of these
curves for T ∈ [15,60] years.
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